Background: Global analyses of gene expression during development reveal specific transcription patterns associated with the emergence of various cell types, tissues, and organs. These heterogeneous patterns are instrumental to ensure the proper formation of the different parts of our body, as shown by the phenotypic effects generated by functional genetic approaches. However, variations at the cellular level can be observed within each structure or organ. In the developing mammalian limbs, expression of Hox genes from the HoxD cluster is differentially controlled in space and time, in cells that will pattern the digits and the forearms. While the Hoxd genes broadly share a common regulatory landscape and large-scale analyses have suggested a homogenous Hox gene transcriptional program, it has not previously been clear whether Hoxd genes are expressed together at the same levels in the same cells.
Results: We report a high degree of heterogeneity in the expression of the Hoxd11 and Hoxd13 genes. We analyzed single-limb bud cell transcriptomes and show that Hox genes are expressed in specific combinations that appear to match particular cell types. In cells giving rise to digits, we find that the expression of the five relevant Hoxd genes (Hoxd9 to Hoxd13) is unbalanced, despite their control by known global enhancers. We also report that specific combinatorial expression follows a pseudo-time sequence, which is established based on the transcriptional diversity of limb progenitors.
Conclusions: Our observations reveal the existence of distinct combinations of Hoxd genes at the single-cell level during limb development. In addition, we document that the increasing combinatorial expression of Hoxd genes in this developing structure is associated with specific transcriptional signatures and that these signatures illustrate a temporal progression in the differentiation of these cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142630 | PMC |
http://dx.doi.org/10.1186/s12915-018-0570-z | DOI Listing |
J Cardiothorac Surg
January 2025
The First Hospital of Lanzhou University, Lanzhou, China.
Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.
Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.
Cell Mol Biol (Noisy-le-grand)
November 2024
Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Türkiye.
Homeobox (HOX) transcript antisense RNA (HOTAIR) and HOX genes are reported to be more expressed in various cancers in humans in recent studies. The role of HOTAIR and HOXD genes in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) is not well known. In this study, expression levels of HOXD8, HOXD9 and HOXD11 from HOXD gene family and HOTAIR were determined from peripheral blood samples of 30 AML and 30 CML patients and 20 healthy volunteers by quantitative Real Time PCR.
View Article and Find Full Text PDFHum Cell
November 2024
Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, Room No. 401, 4th Floor, New Delhi, India.
Acute myeloid leukemia (AML) is characterized by impaired differentiation of myeloid cells leading to hematopoietic failure. Despite advances, the molecular mechanisms driving AML remain incompletely understood, limiting the identification and targeting of critical vulnerabilities in leukemic cells. Homeobox (HOX) genes, encoding transcription factors essential for myeloid and lymphoid differentiation, are distributed across four clusters: HOXA (chromosome 7), HOXB (chromosome 17), HOXC (chromosome 12), and HOXD (chromosome 2).
View Article and Find Full Text PDFGenes (Basel)
November 2024
Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, RJ, Brazil.
Am J Transl Res
October 2024
National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004, Shaanxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!