Background: Gene activity is largely controlled by transcriptional regulation through the action of transcription factors and other regulators. QsMYB1 is a member of the R2R3-MYB transcription factor family related to secondary growth, and in particular, with the cork development process. In order to identify the putative gene targets of QsMYB1 across the cork oak genome we developed a ChIP-Seq strategy.
Results: Results provide direct evidence that QsMY1B targets genes encoding for enzymes involved in the lignin and suberin pathways as well as gene encoding for ABCG transporters and LTPs implicated in the transport of monomeric suberin units across the cellular membrane. These results highlight the role of QsMYB1 as a regulator of lignin and suberin biosynthesis, transport and assembly.
Conclusion: To our knowledge, this work constitutes the first ChIP-Seq experiment performed in cork oak, a non-model plant species with a long-life cycle, and these results will contribute to deepen the knowledge about the molecular mechanisms of cork formation and differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142680 | PMC |
http://dx.doi.org/10.1186/s12870-018-1403-5 | DOI Listing |
Plant Cell Physiol
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
Soil salinization and ground water depletion are increasingly constraining crop production. Identifying useful mechanisms of salt tolerance is an important step towards development of salt-tolerant crops. Of particular interest are mechanisms that are present in wild crop relatives, as they may have greater stress tolerance than crop species.
View Article and Find Full Text PDFSci Rep
January 2025
BESE Division, Plant Cell and Developmental Biology Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
In arid and semi-arid climates, native plants have developed unique strategies to survive challenging conditions. These adaptations often rely on molecular pathways that shape plant architecture to enhance their resilience. Date palms (Phoenix dactylifera) and mangroves (Avicennia marina) endure extreme heat and high salinity, yet the metabolic pathways underlying this resilience remain underexplored.
View Article and Find Full Text PDFAnnu Rev Plant Biol
January 2025
1Department of Plant Biology and Genome Center, University of California, Davis, California, USA;
Plant cells are defined by their walls, which, in addition to providing structural support and shape, are an integral component of the nonliving extracellular space called the apoplast. Cell wall thickenings are present in many different root cell types. They come in a variety of simple and more complex structures with varying composition of lignin and suberin and can change in response to environmental stressors.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
From soil to plant, the water and ions, enter the root system through the symplast and apoplast pathways. The latter gains significance under salt stress and becomes a major port of entry of the dissolved salts particularly the sodium ions into the root vasculature. The casparian strip (CS), a lignified barrier circumambulating the root endodermal cells' radial and transverse walls regulates the movement of water and solutes in and out of the stele.
View Article and Find Full Text PDFChemosphere
December 2024
Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!