Increasingly stringent regulations aimed at protection of the natural environment have stimulated the search for new synthetic methodologies in organic and medicinal chemistry having no or minimum harmful effect. An interesting approach is the use of alternative activation factors, microwaves (MW) or ultrasounds (US) and also their cross-combination, which has been tested in the fast and efficient creation of new structures. At present, an easy and green hybrid strategy ("Lego" chemistry) is generally recommended for the design of new substances from different chemistry building blocks. Often, selected biologically active components with specific chemical reactivities are integrated by a suitably designed homo- or heterodifunctional linker that modifies the functionality of the starting structure, allowing easy covalent linkage to another molecule. In this study, a fast introduction of heterodifunctional halogenoacidic linker to selected mono-, di- and triphenolic active substances, allowing their functionalization, was investigated. Nucleophilic substitution reaction was chosen to produce final ethers with the reactive carboxylic group from phenols. The functionalization was performed using various green factors initiating and supporting the chemical reactions (MW, US, MW-US). The benefits of the three green supporting methods and different conditions of reactions were analyzed and compared with the results of the reaction performed by conventional methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225243 | PMC |
http://dx.doi.org/10.3390/molecules23092360 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!