Xiuyan Jade, produced in Xiuyan County, Liaoning Province, China is one of the four famous jade in China. King Jade, which is deemed the largest jade body of the world, was broken out from a hill. The local government planned to build a tourism site based on the jade culture there. The purpose of the investigation was to evaluate the stability of subsurface foundation, and the possible positions of mined-out zones to prevent the further rolling of the jade body. Cross-hole radar tomography is the key technique in the investigation. Conventional travel time and attenuation tomography based on ray tracing theory cannot provide high-resolution images because only a fraction of the measured information is used in the inversion. Full-waveform inversion (FWI) can provide high-resolution permittivity and conductivity images because it utilizes all the information provided by the radar signals. We deduce the gradient expression of the time-domain FWI with respect to the permittivity and conductivity using a method that is different from that of the previous work and realize the FWI algorithm that can simultaneously update the permittivity and conductivity by using the conjugate gradient method. Inverted results from synthetic data show that time-domain FWI can significantly improve the resolution compared with the ray-based tomogram methods. FWI can distinguish targets that are as small as one-half to one-third wavelength and the inverted physical values are closer to the real ones than those provided by the ray tracing method. We use the FWI algorithm to the field data measured at Xiuyan jade mine. Both the inverted permittivity and conductivity can comparably delineate four mined-out zones, which exhibit low-permittivity and low-conductivity characteristics. Furthermore, the locations of the interpreted mined-out zones are in good agreement with the existing mining channels recorded by geological data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164836 | PMC |
http://dx.doi.org/10.3390/s18093114 | DOI Listing |
Small
January 2025
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
The desire to reduce secondary pollution from shielded electronics devices demands electromagnetic interference (EMI) shields with high green index (GI), which is the ratio of absorbance over reflectance. Achieving high GI values simultaneously with high shielding effectiveness (SE) over 50 dB is a serious unresolved challenge. Reducing the impedance mismatch between the shield and free space is the key to reducing the reflection of incoming radiation and enabling more penetration into the body of the shield for absorption.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanics, University Politehnica of Timisoara, Piata Victoriei 2, 300006 Timisoara, Romania.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Computer Engineering, Weifang University, Weifang 261061, China.
Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland.
In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0-3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!