AI Article Synopsis

  • * Recently, two new ADCs were approved, which has made scientists very interested in developing more, with over 60 new ones being tested.
  • * The success of these new drugs depends on how well they are designed and how carefully the targets on cancer cells are chosen.

Article Abstract

Antibody drug conjugates (ADCs) represent a promising and an efficient strategy for targeted cancer therapy. Comprised of a monoclonal antibody, a cytotoxic drug, and a linker, ADCs offer tumor selectively, reduced toxicity, and improved stability in systemic circulation. Recent approvals of two ADCs have led to a resurgence in ADC research, with more than 60 ADCs under various stages of clinical development. The therapeutic success of future ADCs is dependent on adherence to key requirements of their design and careful selection of the target antigen on cancer cells. Here we review the main components in the design of antibody drug conjugates, improvements made, and lessons learned over two decades of research, as well as the future of third generation ADCs.

Download full-text PDF

Source
http://dx.doi.org/10.3233/HAB-180348DOI Listing

Publication Analysis

Top Keywords

antibody drug
12
drug conjugates
12
adcs
6
antibody
4
conjugates progress
4
progress pitfalls
4
pitfalls promises
4
promises antibody
4
conjugates adcs
4
adcs represent
4

Similar Publications

This study was aimed to evaluate the cost-effectiveness of pembrolizumab with chemotherapy (pembrolizumab combination therapy) and compare it with standard-of-care platinum-based chemotherapy (chemotherapy alone) as a first-line treatment for metastatic nonsquamous NSCLC from the perspective of Taiwan's third-party-payer public health-care system. We used a partitioned survival model with an estimated time horizon of 10 years. The partitioned survival model uses Kaplan-Meier estimates of progression-free and overall survival from the KEYNOTE-189 clinical trial.

View Article and Find Full Text PDF

Purpose Of Review: Human epidermal growth factor receptor 2 (HER2) is a critical target in advanced gastric cancer (AGC). This review highlights the current treatment landscape, lessons learned from past clinical trials, and prospects for future treatment strategies for HER2-positive AGC.

Recent Findings: Trastuzumab had been the standard treatment for HER2-positive AGC for a decade, and subsequently, trastuzumab deruxtecan, an antibody-drug conjugate (ADC), emerged with an impressive response.

View Article and Find Full Text PDF

Treatment advances across the cervical cancer spectrum.

Nat Rev Clin Oncol

January 2025

Department of Obstetrics and Gynecology, University of California, Irvine, Irvine, CA, USA.

Cervical cancer is preventable with screening and vaccination approaches; however, access to these preventative measures is limited both nationally and globally and thus many women will still develop cervical cancer. Novel treatments and practice-changing research have improved cervical cancer outcomes over the past few decades. In this Review, we discuss clinical trials that have refined or redefined the treatment of cervical cancers across the early stage, locally advanced, persistent, recurrent and/or metastatic disease settings.

View Article and Find Full Text PDF

Ionizable polymeric micelles (IPMs) for efficient siRNA delivery.

Nat Commun

January 2025

Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.

Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.

View Article and Find Full Text PDF

MALDI-HiPLEX-IHC mass spectrometry imaging (MSI) represents a newly established workflow to map tens of antibodies linked to photocleavable mass tags (PC-MTs), which report the distribution of antigens in formalin-fixed paraffin-embedded (FFPE) tissue sections. While this highly multiplexed approach has previously been integrated with untargeted methods, the possibility of mapping target cell antigens and performing bottom-up spatial proteomics on the same tissue section has yet to be explored. This proof-of-concept study presents a novel workflow combining MALDI-HiPLEX-IHC with untargeted spatial proteomics to analyze a single FFPE tissue section, using clinical clear cell renal cell carcinoma (ccRCC) tissue as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!