Photodegradation of brominated flame retardants in polystyrene: Quantum yields, products and influencing factors.

Chemosphere

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France. Electronic address:

Published: November 2018

Brominated flame retardants (BFRs) are widely used as additives in plastics, textiles and electronics materials. Here, we investigated the photodegradation of four BFRs including decabromobiphenylether (BDE-209), tetrabromobipsphenol A (TBBPA), tetrabromobisphenol A-bis(2,3-dibromopropylether) (TBBPA-DBPE) and tetrabromobisphenol A bis (allyl) ether (TBBPA-BAE). Experiments were carried out in polystyrene (PS) films using monochromatic and polychromatic irradiations. For comparison, irradiations were also carried in a solvent (tetrahydrofuran: THF). Monitoring of BFR degradation was performed using bulk and surface infrared (IR) measurements, as well as by extraction and HPLC-UV. Photoproducts were characterized using HPLC-high resolution electrospray ionization mass spectrometry (HPLC-ESI-Orbitrap-MS). All four BFRs underwent photochemical transformation in THF at 290 nm with a quantum yield (Φ) ranging from 0.05 for TBBPA to 0.27 for BDE-209, indicating an increase of photoreactivity with the number of Br atoms in BFRs. On the other hand, no major difference in the Φ values was observed when BFRs were embedded in PS films (Φ: 0.82-0.89). The higher photoreactivity in PS appears to be associated with a fast oxidation of PS as revealed by infrared (IR) analysis and yellowing of the films. Interestingly, the faster the yellowing occurred, the faster the BFR degradation was inhibited due to light screening effect. Several major photoproducts were identified for TBBPA and TBBPA-DBPE. Additional photoproducts possibly arising from PS oxidation and bromination by Br were observed for the first time. This work provides a better understanding of the reactivity and fate of BFRs in polymers allowing for a better assessment of their environmental impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.07.147DOI Listing

Publication Analysis

Top Keywords

brominated flame
8
flame retardants
8
bfr degradation
8
bfrs
6
photodegradation brominated
4
retardants polystyrene
4
polystyrene quantum
4
quantum yields
4
yields products
4
products influencing
4

Similar Publications

Associations between brominated flame retardants exposure and non-alcoholic fatty liver disease: Mediation analysis in the NHANES.

Ecotoxicol Environ Saf

January 2025

Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China. Electronic address:

Background: Exposure to brominated flame retardants (BFRs) may negatively impact human health. The association of BFRs with nonalcoholic fatty liver disease (NAFLD) in the general population is unclear. Meanwhile, limited studies have investigated the potential role of oxidative stress and inflammation in this link.

View Article and Find Full Text PDF

Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices.

View Article and Find Full Text PDF

Based on the third Chinese National Human Milk Survey (NHMS) conducted in 2016-2019, three typical legacy brominated flame retardants (BFRs), namely decabromodiphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecanes (HBCDDs, sum of three isomers), were measured in 100 pooled human milk samples collected from 24 provinces across China. The median concentrations of BDE-209, TBBPA and HBCDDs were 0.27, 0.

View Article and Find Full Text PDF

Analysis of potential human accumulation differences and mechanisms of environmental new flame retardants: Based on in vitro experiments and theoretical calculations.

Sci Total Environ

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Hundreds of new flame retardants (NFRs) are widely used, causing environmental pollution and threating human health. In this study, based on the interaction of NFRs and human serum albumin (HSA), we assessed the differences in potential human accumulation of 8 NFRs including 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromobisphenol A bis(dibromopropyl ether) (TBBPA-DBPE), 2,4,6-tribromophenol (TBP), pentabromophenol (PBP), tri-n-butyl phosphate (TnBP), triphenyl phosphate (TPP), Tri(2-chloroethyl) phosphate (TCEP), and Tri(1,3-dichloro-2-propyl) phosphate (TDCP). All NFRs could bind to HSA and cause slight damage to its structure, suggesting their potential human accumulation ability.

View Article and Find Full Text PDF

Environmentally relevant concentrations of DBDPE (decabromodiphenyl ethane) induce intestinal toxicity in silkworms (Bombyx mori L.).

Environ Pollut

January 2025

Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China. Electronic address:

Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!