Inhibition of STAT phosphorylation is recognized as a viable therapeutic strategy for disrupting tumorigenesis. Constitutive STAT phosphorylation is found with high frequency in a number of primary tumor types, while non-cancer cells exhibit low basal activity, providing an exploitable therapeutic window. STAT activation involves phosphorylation of the SH domain by a number of tyrosine kinases followed by STAT dimerization and translocation to the nucleus. By blocking the cognate binding site, STAT SH-domain inhibitors can impede kinase-mediated de novo STAT phosphorylation. Assessing for inhibitors of STAT phosphorylation has previously been conducted exclusively in cellulo using Western blot analysis. However, while providing useful in cellulo efficacy, it is not possible to conclude that inhibition is due to a direct blockade of STAT protein. Here we developed a functional assay that directly reports the blockade of phosphorylation as a result of inhibitor interaction with STAT proteins. We have optimized reaction conditions for the functional assay and validated the assay against known STAT5B ligands, including peptides and small molecule inhibitors. As part of the study, we have also identified several sites of STAT5B phosphorylation by Abl kinase. This assay will serve to delineate the functional mechanism of STAT binders in vitro and deconvolute the mechanism of phospho-STAT inhibition observed in Western blot analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2018.08.036 | DOI Listing |
Eur J Med Res
January 2025
Infectious Diseases Department, Jinhua Central Hospital, Jinhua, 321000, China.
Background: Sepsis is characterized by an excessive immune response. Modulation of the immune response, particularly macrophage polarization, may provide therapeutic benefit. The effects of Caerulomycin A (caeA), a known STAT1 phosphorylation inhibitor, on macrophage polarization and inflammatory markers were explored using a lipopolysaccharide (LPS)-induced sepsis mouse model.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China. Electronic address:
Damage to glycocalyx and tight junction are key determinants of endothelial permeability, which is the main pathological feature of acute respiratory distress syndrome (ARDS). However, the effect of glycocalyx heparan sulfate (HS) on tight junction proteins occludin and ZO-1 has not been revealed. In this study, the mice exposed to LPS results showed that FITC-albumin infiltration, HS shedding, and tight junction protein impairment were most severe at 6 h of LPS treatment compared with those in other treatment times.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Pharmacy School, Shihezi University, Xinjiang, 832000, China; Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China. Electronic address:
Ethnopharmacological Relevance: Regan Saibisitan (RGS) is a classic prescription used to treat cough, pneumonia, and other respiratory infections in Uygur medicine. It is a granule composed of 12 kinds of medicinal materials. However, the mechanism by which RGS regulates lung disease remains unclear.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Basic Medicine, Qingdao University, Qingdao, China. Electronic address:
This study investigates the therapeutic effects of recombinant human IL-10 (rhIL-10) administered via aerosol inhalation in acute lung injury (ALI), with a particular focus on neutrophils. It explores how rhIL-10, in the presence of platelets, modulates neutrophil polarization to ameliorate acute lung injury. Initially, the ALI model established in mice demonstrated that aerosol inhalation of rhIL-10 significantly mitigated the cytokine storm in the lungs, reduced pulmonary edema, and alleviated histopathological damage to lung tissue.
View Article and Find Full Text PDFArq Gastroenterol
January 2025
Universidade Estadual de Campinas, Programa de Pós-Graduação em Farmacologia, Campinas, SP, Brasil.
Background: Hepcidin's main function is to control iron availability to hematopoiesis. However, it has been shown that hepcidin may have an additional role in intestinal inflammation, as intestinal cells and leukocytes increase the production in experimental colitis and Crohn's disease.
Objective: Using an HT-29 cell as a model, we investigated the role of hepcidin in intestinal inflammation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!