Perillyl alcohol is a natural compound that has attracted a significant interest due to its potent antitumor activity. However, clinical trials have exhibited poor tolerance by oral administration, mainly due to gastrointestinal side effects. We propose the entrapment of perillyl alcohol into poly(D,L-lactic acid)-block-poly(ethylene glycol) (PLA-b-PEG) as delivery platform (entrapment efficiency of 63%-68%). The influence of different concentrations of the tensoactives poly(vinyl alcohol) and sodium cholate (SC) on shear strength and morphology was evaluated by confocal laser scanning microscopy and interfacial tension studies. Only the microcapsules formulated with SC maintained their sphericity when submitted to shear stress. These results indicate that the interface is better organized with SC, conferring mutual stacked packing that is able to better stabilize the organic drop. The in vitro release profile of the drug from the microcapsules was correlated with pore formation and polymer degradation, best fitted to the Baker-Lonsdale model. The loaded microcapsules showed an IC equivalent to that of the free drug (80 μg/mL) after 72 h of exposure. However, after 24 h of exposure, loaded microcapsules showed an IC almost two-fold higher (220 μg/mL) suggesting gradual release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.09.003DOI Listing

Publication Analysis

Top Keywords

perillyl alcohol
12
loaded microcapsules
8
microcapsules
5
tensoactives morphology
4
morphology release
4
release kinetics
4
kinetics pla-b-peg
4
pla-b-peg microcapsules
4
microcapsules loaded
4
loaded natural
4

Similar Publications

Oxidation of myrtenol to myrtenal epoxide in a porphyrin-based photocatalytic system - A novel terpene alcohol derivative with antimicrobial and anticancer properties.

Bioorg Chem

December 2024

Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland. Electronic address:

Biomimetic catalysis using porphyrins enables gentle oxidation of terpenes with molecular oxygen and light. This study explores the photooxidation of (-)-myrtenol under visible light to synthesize new terpenoid products with promising biological activity. Among the porphyrins tested, tetraphenylporphyrin (HTPP) exhibited the highest catalytic efficiency and stability in chloroform, producing myrtenal epoxide (ME) as the main product (with a molar conversion of myrtenol of 66.

View Article and Find Full Text PDF

Characterization and catalytic activity of Co/Mo-modified activated carbons derived from orange peels in limonene oxidation.

Environ Sci Pollut Res Int

December 2024

Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland.

The possibility of using orange peels for the preparation of porous activated carbons by the chemical activation with HPO and the application of the obtained carbonaceous materials as the metal catalyst supports was investigated. Activated carbon and carbon-metal materials were used as the limonene oxidation catalysts. The materials were characterized by the following instrumental methods: the sorption of N2 at-196 °C, XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy) and SEM (Scanning Electron Microscope), XPS (The X-ray photoelectron spectroscopy).

View Article and Find Full Text PDF

Background/objectives: Perillyl alcohol (POH), a plant-derived compound, has demonstrated anti-tumor activity across various human cancers. Understanding the regulatory pathways through which POH exerts its effects is crucial for identifying new therapeutic opportunities and exploring potential drug repositioning strategies. Therefore, this scoping review aims to provide a comprehensive overview of the metabolic and regulatory pathways involved in the anticancer effects of POH, based on in vitro evidence.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!