In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-β ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood. We report that in Paracentrotus lividus, the activity of the maternally expressed ETS-domain transcription factor Yan/Tel is essential for the spatial restriction of nodal. Inhibiting translation of maternal yan/tel mRNA disrupted dorsal-ventral patterning in all germ layers by causing a massive ectopic expression of nodal starting from cleavage stages, mimicking the phenotype caused by inactivation of the maternal Nodal antagonist Panda. We show that like in the fly or in vertebrates, the activity of sea urchin Yan/Tel is regulated by phosphorylation by MAP kinases. However, unlike in the fly or in vertebrates, phosphorylation by GSK3 plays a central role in the regulation Yan/Tel stability in the sea urchin. We show that GSK3 phosphorylates Yan/Tel in vitro at two different sites including a β-TRCP ubiquitin ligase degradation motif and a C-terminal Ser/Thr rich cluster and that phosphorylation of Yan/Tel by GSK3 triggers its degradation by a β-TRCP/proteasome pathway. Finally, we show that, Yan is epistatic to Panda and that the activity of Yan/Tel is required downstream of Panda to restrict nodal expression. Our results identify Yan/Tel as a central regulator of the spatial expression of nodal in Paracentrotus lividus and uncover a key interaction between the gene regulatory networks responsible for patterning the embryo along the dorsal-ventral and animal-vegetal axes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160229PMC
http://dx.doi.org/10.1371/journal.pgen.1007621DOI Listing

Publication Analysis

Top Keywords

expression nodal
20
sea urchin
16
nodal expression
12
nodal
10
yan/tel
9
expression
8
spatial expression
8
urchin embryo
8
restriction nodal
8
paracentrotus lividus
8

Similar Publications

Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Objective: Our study investigated how arecoline-induced extracellular vesicle (EV) secretion suppresses PAX1 protein production through DNA hypermethylation and examined whether PAX1 downregulation enhances cancer stemness and immunosuppression in the tumor microenvironment.

Materials And Methods: EVs were isolated from SAS/TW2.6 cancer cell lines using ultracentrifugation and identified using transmission electron microscopy.

View Article and Find Full Text PDF

Female breast cancer is the most common and the fifth deadliest cancer worldwide. It is influenced by a combination of genetic, hormonal, and environmental factors. The excision repair cross-complementation group 3 gene () has recently been identified as a breast cancer susceptibility gene in various cohorts of different geographical and ethnic origin.

View Article and Find Full Text PDF

Background/aim: Lymphangioleiomyomatosis (LAM) belongs to the perivascular epithelioid cell tumor (PEComa) family. The relationship between LAM and tuberous sclerosis complex (TSC) is of particular concern in a subset of women with clinically occult LAM involving the pelvic lymph nodes. This study aimed to investigate the clinicopathological features of incidental nodal LAM detected during the surgical staging of gynecological tumors.

View Article and Find Full Text PDF

Modeling the interplay between regional heterogeneity and critical dynamics underlying brain functional networks.

Neural Netw

December 2024

School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:

The human brain exhibits heterogeneity across regions and network connectivity patterns; However, how these heterogeneities contribute to whole-brain network functions and cognitive capacities remains unclear. In this study, we focus on the regional heterogeneity reflected in local dynamics and study how it contributes to the emergence of functional connectivity patterns, network ignition dynamics of the empirical brains. We find that the level of synchrony among voxelwise neural activities measured from the fMRI data is significantly correlated with the transcriptional variations in excitatory and inhibitory receptor gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!