In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-β ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood. We report that in Paracentrotus lividus, the activity of the maternally expressed ETS-domain transcription factor Yan/Tel is essential for the spatial restriction of nodal. Inhibiting translation of maternal yan/tel mRNA disrupted dorsal-ventral patterning in all germ layers by causing a massive ectopic expression of nodal starting from cleavage stages, mimicking the phenotype caused by inactivation of the maternal Nodal antagonist Panda. We show that like in the fly or in vertebrates, the activity of sea urchin Yan/Tel is regulated by phosphorylation by MAP kinases. However, unlike in the fly or in vertebrates, phosphorylation by GSK3 plays a central role in the regulation Yan/Tel stability in the sea urchin. We show that GSK3 phosphorylates Yan/Tel in vitro at two different sites including a β-TRCP ubiquitin ligase degradation motif and a C-terminal Ser/Thr rich cluster and that phosphorylation of Yan/Tel by GSK3 triggers its degradation by a β-TRCP/proteasome pathway. Finally, we show that, Yan is epistatic to Panda and that the activity of Yan/Tel is required downstream of Panda to restrict nodal expression. Our results identify Yan/Tel as a central regulator of the spatial expression of nodal in Paracentrotus lividus and uncover a key interaction between the gene regulatory networks responsible for patterning the embryo along the dorsal-ventral and animal-vegetal axes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160229 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1007621 | DOI Listing |
PLoS One
January 2025
VA Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America.
Oral Dis
January 2025
Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.
Objective: Our study investigated how arecoline-induced extracellular vesicle (EV) secretion suppresses PAX1 protein production through DNA hypermethylation and examined whether PAX1 downregulation enhances cancer stemness and immunosuppression in the tumor microenvironment.
Materials And Methods: EVs were isolated from SAS/TW2.6 cancer cell lines using ultracentrifugation and identified using transmission electron microscopy.
Female breast cancer is the most common and the fifth deadliest cancer worldwide. It is influenced by a combination of genetic, hormonal, and environmental factors. The excision repair cross-complementation group 3 gene () has recently been identified as a breast cancer susceptibility gene in various cohorts of different geographical and ethnic origin.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
Background/aim: Lymphangioleiomyomatosis (LAM) belongs to the perivascular epithelioid cell tumor (PEComa) family. The relationship between LAM and tuberous sclerosis complex (TSC) is of particular concern in a subset of women with clinically occult LAM involving the pelvic lymph nodes. This study aimed to investigate the clinicopathological features of incidental nodal LAM detected during the surgical staging of gynecological tumors.
View Article and Find Full Text PDFNeural Netw
December 2024
School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:
The human brain exhibits heterogeneity across regions and network connectivity patterns; However, how these heterogeneities contribute to whole-brain network functions and cognitive capacities remains unclear. In this study, we focus on the regional heterogeneity reflected in local dynamics and study how it contributes to the emergence of functional connectivity patterns, network ignition dynamics of the empirical brains. We find that the level of synchrony among voxelwise neural activities measured from the fMRI data is significantly correlated with the transcriptional variations in excitatory and inhibitory receptor gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!