Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While the neurobiology of simple and habitual choices is relatively well known, our current understanding of goal-directed choices and planning in the brain is still limited. Theoretical work suggests that goal-directed computations can be productively associated to model-based (reinforcement learning) computations, yet a detailed mapping between computational processes and neuronal circuits remains to be fully established. Here we report a computational analysis that aligns Bayesian nonparametrics and model-based reinforcement learning (MB-RL) to the functioning of the hippocampus (HC) and the ventral striatum (vStr)-a neuronal circuit that increasingly recognized to be an appropriate model system to understand goal-directed (spatial) decisions and planning mechanisms in the brain. We test the MB-RL agent in a contextual conditioning task that depends on intact hippocampus and ventral striatal (shell) function and show that it solves the task while showing key behavioral and neuronal signatures of the HC-vStr circuit. Our simulations also explore the benefits of biological forms of look-ahead prediction (forward sweeps) during both learning and control. This article thus contributes to fill the gap between our current understanding of computational algorithms and biological realizations of (model-based) reinforcement learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160242 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1006316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!