Dendrite-Free Li Metal Anode for Rechargeable Li-SO Batteries Employing Surface Modification with a NaAlCl-2SO Electrolyte.

ACS Appl Mater Interfaces

Department of Energy Engineering , Hanyang University, 222 Wangsimni-ro , Seongdong-gu, Seoul 04763 , Republic of Korea.

Published: October 2018

Dendritic growth of a Li metal anode during cycling is one of major issues to be addressed for practical application of Li metal rechargeable batteries. Herein, we demonstrate that surface modification of Li metal with a Na-containing SO electrolyte can be an effective way to prevent dendritic Li growth during cell operation. The surface-modified Li metal anode exhibited no dendritic deposits even under a high areal capacity (5 mA h cm) and a high current density (3 mA cm), whereas the unmodified anode showed typical filamentary Li deposition. The surface-modified Li metal anode also demonstrated significantly enhanced electrochemical performance, which could be attributed to the newly formed Na-containing inorganic surface layer that exhibits uniform and dense properties. Consequently, surface modification with a Na-containing SO inorganic electrolyte is suggested as one of the most effective ways to realize a highly stable Li metal anode with dendrite-free Li deposition for Li metal-based rechargeable batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b08731DOI Listing

Publication Analysis

Top Keywords

metal anode
20
surface modification
12
dendritic growth
8
rechargeable batteries
8
surface-modified metal
8
na-containing inorganic
8
anode
6
metal
6
dendrite-free metal
4
anode rechargeable
4

Similar Publications

Understanding the phase structure evolution and charge storage mechanism of FeCoNi-MOFs as electrodes for asymmetric supercapacitors.

J Colloid Interface Sci

January 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China. Electronic address:

Metal-organic frameworks (MOFs) due to abundant apertures, adjustable components, and multi-purpose structures have broad application prospects in supercapacitors. However, its low conductivity, poor stability, and difficulty growing evenly on the conductive substrate limit the electrochemical energy storage performance. Herein, with FeCoNi-OH nanosheets serving as the precursors, the trimetallic FeCoNi-MOF (FCNM) multilayer structure is successfully synthesized on activated carbon cloth (AC), and its optimal growth state (FCNM/AC-12 h) is achieved by regulating the reaction time.

View Article and Find Full Text PDF

A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.

View Article and Find Full Text PDF

Effect of defects on ballistic transport in a bilayer SnS-based junction with Co intercalated electrodes.

Phys Chem Chem Phys

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.

This study theoretically investigates the defect-related electronic structure and transport properties in a device where a semiconductor bilayer SnS (BL-SnS) serves as the central scattering region and bilayer SnS with cobalt atom intercalation (Co-SnS) as the metallic electrodes. The Co-SnS/BL-SnS junction forms an ohmic contact, which is robust to defects. Low contact resistances of 52.

View Article and Find Full Text PDF

Unraveling the conversion mechanism toward spinel sulfides as cathode materials for Mg-ion batteries.

Phys Chem Chem Phys

January 2025

National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.

Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.

View Article and Find Full Text PDF

Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!