A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Virtual Reality Experiments with Physiological Measures. | LitMetric

Virtual reality (VR) experiments are increasingly employed because of their internal and external validity compared to real-world observation and laboratory experiments, respectively. VR is especially useful for geographic visualizations and investigations of spatial behavior. In spatial behavior research, VR provides a platform for studying the relationship between navigation and physiological measures (e.g., skin conductance, heart rate, blood pressure). Specifically, physiological measures allow researchers to address novel questions and constrain previous theories of spatial abilities, strategies, and performance. For example, individual differences in navigation performance may be explained by the extent to which changes in arousal mediate the effects of task difficulty. However, the complexities in the design and implementation of VR experiments can distract experimenters from their primary research goals and introduce irregularities in data collection and analysis. To address these challenges, the Experiments in Virtual Environments (EVE) framework includes standardized modules such as participant training with the control interface, data collection using questionnaires, the synchronization of physiological measurements, and data storage. EVE also provides the necessary infrastructure for data management, visualization, and evaluation. The present paper describes a protocol that employs the EVE framework to conduct navigation experiments in VR with physiological sensors. The protocol lists the steps necessary for recruiting participants, attaching the physiological sensors, administering the experiment using EVE, and assessing the collected data with EVE evaluation tools. Overall, this protocol will facilitate future research by streamlining the design and implementation of VR experiments with physiological sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235065PMC
http://dx.doi.org/10.3791/58318DOI Listing

Publication Analysis

Top Keywords

experiments physiological
12
physiological measures
12
physiological sensors
12
virtual reality
8
reality experiments
8
spatial behavior
8
design implementation
8
implementation experiments
8
data collection
8
eve framework
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!