Microfluidics has become a critical tool in research across the biological, chemical, and physical sciences. One important component of microfluidic experimentation is a stable fluid handling system capable of accurately providing an inlet flow rate or inlet pressure. Here, we have developed a syringe pump system capable of controlling and regulating the inlet fluid pressure delivered to a microfluidic device. This system was designed using low-cost materials and additive manufacturing principles, leveraging three-dimensional (3D) printing of thermoplastic materials and off-the-shelf components whenever possible. This system is composed of three main components: a syringe pump, a pressure transducer, and a programmable microcontroller. Within this paper, we detail a set of protocols for fabricating, assembling, and programming this syringe pump system. Furthermore, we have included representative results that demonstrate high-fidelity, feedback control of inlet pressure using this system. We expect this protocol will allow researchers to fabricate low-cost syringe pump systems, lowering the entry barrier for the use of microfluidics in biomedical, chemical, and materials research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235068 | PMC |
http://dx.doi.org/10.3791/57532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!