Enzymatic Adaptation of Podospora anserina to Different Plant Biomass Provides Leads to Optimized Commercial Enzyme Cocktails.

Biotechnol J

Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.

Published: April 2019

AI Article Synopsis

  • Podospora anserina, a late colonizer of herbivore dung, has developed enzymes for breaking down tough plant materials, indicating potential uses in biotechnology.
  • The study focused on how P. anserina's gene expression changes when grown on soybean hulls and corn stover, finding initial activation of specific genes related to each feedstock and broader gene expression over time, especially with soybean hulls.
  • The findings highlight how understanding the organism's transcriptomic responses can lead to better methods for breaking down plant biomass for industrial applications.

Article Abstract

As a late colonizer of herbivore dung, Podospora anserina has evolved an enzymatic machinery to degrade the more recalcitrant fraction of plant biomass, suggesting a great potential for biotechnology applications. The authors investigated its transcriptome during growth on two industrial feedstocks, soybean hulls (SBH) and corn stover (CS). Initially, CS and SBH results in the expression of hemicellulolytic and amylolytic genes, respectively, while at later time points a more diverse gene set is induced, especially for SBH. Substrate adaptation is also observed for carbon catabolism. Overall, SBH resulted in a larger diversity of expressed genes, confirming previous proteomics studies. The results not only provide an in depth view on the transcriptomic adaptation of P. anserina to substrate composition, but also point out strategies to improve saccharification of plant biomass at the industrial level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201800185DOI Listing

Publication Analysis

Top Keywords

plant biomass
12
podospora anserina
8
enzymatic adaptation
4
adaptation podospora
4
anserina plant
4
biomass leads
4
leads optimized
4
optimized commercial
4
commercial enzyme
4
enzyme cocktails
4

Similar Publications

The biochemical composition of sediments, which depends on the origin of the organic matter (OM), is decisive in methane (CH) production. This study aimed to determine the CH produced under anaerobic conditions from different substrates: native reservoir sediments and sediments with the addition of complex OM from Microcystis spp. blooms and terrestrial plants (pasture), alongside the biochemical characterization of the substrates used.

View Article and Find Full Text PDF

AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding.

Mycorrhiza

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.

Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.

View Article and Find Full Text PDF

Co-cropping of hyperaccumulators is still poorly understood, while associations between hyperaccumulators and other plant species may promote beneficial plant interactions and lead to increased metal phytoextraction from contaminated soils. The aim of this study was to evaluate the phytoextraction potential of the Ni-hyperaccumulator in different co-cropping combinations with and . Plants were grown in ultramafic soil in a growth chamber for 45 days and Al, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations in roots and leaves were analyzed.

View Article and Find Full Text PDF

Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.

View Article and Find Full Text PDF

The contamination of water with dyes stemming from the discharge of industrial waste poses significant environmental risks and health concerns. In this study, the phytoremediation potential of the wetland plant was investigated (as a function of plant biomass, pH, contact time, and initial dye concentration) for the removal of methylene blue and methyl red dyes from wastewater. The experimental adsorption capacities under the optimum conditions were found to be 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!