This study has centered on the establishment of an efficient, simple and reliable dispersive solid-phase extraction method followed by an accurate trace determination of selected nitrophenols as a class of compounds with high toxicity and low degradability. To achieve the above goal, a zirconium-based amino-tagged metal-organic framework nanosorbent was synthesized, characterized and eventually employed for the extraction of two nitrophenols from various environmental water samples. Once the extraction of analytes had occurred, they were desorbed from the metal-organic framework sorbent using an appropriate mixed solvent followed by high-performance liquid chromatography with ultraviolet detection. Under the optimal extraction conditions, the calibration curves for the analytes were linear over the concentration range of 1-200 μg/L. The accuracy of the method was tested by the relative recovery experiments on the fortified real samples with the results falling within the range of 91 to 106%, while the corresponding precisions varied in the span of 4.6-9.0%. Based on a signal-to-noise ratio of 3, the method detection limits were determined to be 0.5 μg/L for both analytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201800764 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Science Education and Research (IISER), Chemistry, Dr. Homi Bhabha Road, Pashan, 411008, Pune, INDIA.
Metal-organic frameworks (MOFs) are a fascinating class of structured materials with diverse functionality originating from the distinctive physicochemical properties. This review focuses on the specific chemical design of geometrically frustrated MOFs along with the origin of the intriguing magnetic properties. We have discussed the arrangement of spin centres (metal and ligand) which are responsible for the unusual magnetic phenomena in MOFs.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China.
During the oxygen evolution reaction (OER), metal-organic framework (MOF) catalysts undergo structural reorganization, a phenomenon that is still not fully comprehended. Additionally, designing MOFs that undergo structural reconstruction to produce highly active OER catalysts continues to pose significant challenges. Herein, a bimetallic MOF (CoNi-MOF) with carboxylate oxygen and pyridine nitrogen coordination has been synthesized and its reconstruction behavior has been analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!