A green, simple, and efficient room-temperature aqueous synthetic route for the fabrication of novel porous coordination polymer nanoparticles (NPs) composed of Cu and imidazolate was developed. Colloidal stability, morphology changes, and structural and chemical integrity of the developed NPs, in several solvents having different polarity, were investigated. Basic physicochemical properties of selected NPs (i.e., NP1, NP2, and NP3), such as size, optical and magnetic activity, porosity, thermal stability, structure, aging, and catalytic activity, were determined. Data indicate that the addition of the surfactant hexadecyltrimethylammonium bromide (CTAB) and the final solvent determine the size, morphology, and structure of the different NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.8b01612 | DOI Listing |
J Fluoresc
January 2025
College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China.
The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.
View Article and Find Full Text PDFChem Asian J
January 2025
Indian Institute of Technology Guwahati, Department of Chemistry, Department of Chemistry, 781039, Guwahati, INDIA.
Fulfilment of energy demand by utilizing renewable energy sources that do not contribute to the production of greenhouse gases is a step forward in mitigating global warming. However, with the energy sources being intermittent in nature, renewable energy needs to be stored effectively on a grid scale. In this context, the development of redox-flow batteries has emerged as a promising technology where charging and discharging processes are accomplished by the redox shuttling of the electrolytes, namely anolytes and catholytes.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.
Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.
Inorg Chem
January 2025
State Key Laboratory of Tea Biology and Utilization, Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.
The green and facile biobased functional materials have attracted great attention due to the promising potential to deal with the water pollution of toxic selenium ions that act as a serious threat to human health and the ecological environment. The development of cheap and eco-friendly approaches to remove SeO is of great significance for the safety of drinking water. However, there are some disadvantages in most of the employed methods, such as poor removal capability, high cost, and unsustainability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Westlake University, School of Engineering, 18 Shilongshan Road, 310024, Hangzhou, CHINA.
The Friedel-Crafts reaction has been extensively applied to the preparation of various porous organic polymers because of its simple operation and abundant building blocks. However, due to its poor reversibility and excessive random reactive sites, the synthesis of crystalline organic polymers/frameworks by Friedel-Crafts reaction has never been realized so far. Herein, we develop a molecular confined Friedel-Crafts reaction strategy to achieve rapid preparation (within only 30 minutes) of highly crystalline covalent triazine frameworks (CTFs) with tailorable functionality for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!