Four cyclic octapeptides were designed from ascidiacyclamide [cyclo(-Ile-Oxz-D-Val- Thz-) ] (ASC, 1) to investigate the effects of oxazoline (Oxz) and thiazole (Thz) rings on the structures and cytotoxicities of the peptides. cyclo(-Ile-Thz-D-Val-Oxz-) (2) had the same number of Oxz and Thz rings as ASC, but the ring positions were switched. cyclo(-Ile-Oxz-D-Val-Thz-Ile-Thz-D-Val-Thz-) (3) and cyclo(-Ile-Thz-D-Val-Oxz-Ile-Thz-D-Val-Thz-) (4) contained one Oxz and three Thz rings within the molecule. All Oxz rings were substituted with Thz in cyclo(-Ile-Thz-D-Val-Thz-) (5). These analogues had new Oxz and Thz blocks forming the 24-membered ring. Based on CD spectra and X-ray diffraction analyses, the structures of all four analogues were classified as square ASC forms. But the structures of 2 and 5 differed from the original square form of 1, and they showed no cytotoxicity. The structure of 3 was very similar to that of 1, and 3 showed 10 times greater cytotoxicity than 1. Although no definite structure of 4 was obtained, it showed three times greater cytotoxicity than 1. It appears that the position and number of Oxz residues are essential determinants in the structure-cytotoxicity relationship of ASC analogues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.3120 | DOI Listing |
iScience
December 2024
School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China.
We propose and demonstrate a structure consisting of graphene rings and square rings that enables broadband and tunable plasmon-induced transparency (PIT) effects. Through coupled Lorentz model analysis, we attribute the transmission window at 2.1 THz to the interference between the equipartitioned exciton resonance of the graphene ring pairs and the inductive-capacitive resonance of the graphene square ring pairs.
View Article and Find Full Text PDFTerahertz (THz) metasurfaces provide unprecedented abilities to realize versatile THz wavefronts manipulations. Nevertheless, these high degree of freedom, non-periodic, densely arranged subwavelength unit cells pose numerous extreme parameter requirements for the fabrication of metasurfaces, presenting significant challenges to their practical application. Herein, a spatial shaping femtosecond laser printing system, based on spatial light modulation (SLM), is proposed for the creation of THz metasurfaces.
View Article and Find Full Text PDFElectromagnetically induced transparency (EIT) originating from quantum physics can lead to a very narrow-band transparent window, which is sensitive to minor environmental changes. The rational construction of highly sensitive EIT metamaterials facilitates its wide sensing application in the terahertz (THz) range. In this work, we designed what we believe to be a novel polarization-independent EIT terahertz metamaterial sensor composed of four symmetrical Chinese Taichi-like rings and a crossed-shaped structure.
View Article and Find Full Text PDFThe development of methods for the generation of strong ultrafast electromagnetic pulses in the terahertz (THz) spectral range has led to a surge of progress in nonlinear THz spectroscopy and THz control of molecular and collective responses. For spectroscopy in the 1-THz range, the submillimeter wavelengths and associated large spot sizes, large optical elements, and short distances between final focusing elements and samples can lead to cumbersome experimental setups that are incompatible with some sample environments. Here, we introduce a novel terahertz ring excitation (TREx) optical pumping geometry to generate superposing, focusing fields in planar THz waveguides made out of the electro-optic material lithium tantalate.
View Article and Find Full Text PDFACS Omega
November 2024
THz Technology Laboratory; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
In recent findings, a new classification of 1D and 2D tetrahexagonal boron nitrides (-BN) consisting of square and hexagonal rings has been documented. These materials exhibit impressive properties such as the tunable band gap, strong optical absorption, suitable sign-tunable Poisson's ratio, and high ideal strength, making them promising for applications in nano- and opto-electronic industries. Stimulated by these studies, we have designed a cage-based three-dimensional tetrahexagonal boron nitride (3D -BN) structure, which demonstrates excellent thermal, dynamic, and mechanical stability, including exceptional cohesive and formation energies of 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!