Background: The antimicrobial properties of orthodontic wire and brackets with nitrogen-doped titanium dioxide (N-doped TiO2) coating have been studied in the past. However, the evaluation period had been short and limited to 30 days. The aim of the present study was to extend the evaluation period (up to 90 days) of assessing the long-term antimicrobial effects of stainless steel orthodontic brackets coated with nitrogen-doped titanium dioxide (N-doped TiO2).
Methods: A total of 40 stainless steel pre-adjusted premolar brackets were equally divided into two groups; namely the control group (n=20, uncoated brackets) and the experimental group (n=20, coated brackets). RF magnetron sputtering was used to apply a thin film of TiO2 on the bracket surface. The crystalline structure of the thin film was assessed using X-ray diffraction. The antimicrobial property of the brackets against Streptococcus mutans (S. mutans) was evaluated using the survival rate by colony-forming units (CFU) at four intervals: 24 hours (T0), 30 days (T1), 60 days (T2), and 90 days (T3). 2-way ANOVA Repeated Measures was used to compare the effects between the groups over the time.
Results: There was no significant interaction between group and time (p = 0.568). The orthodontic brackets coated with the N-doped TiO2 thin film showed a significant CFU reduction (37.71 ± 5.21, 37.81 ± 5.03, 37.98 ± 5.37, and 37.74 ± 5.21 at T0, T1, T2, and T3, respectively) compared to the uncoated brackets (400.91 ± 14.67, 401.58 ± 14.01, 400.31 ± 14.68, and 402.04 ± 13.98 at T0, T1, T2, and T3, respectively) through visible light (p < 0.001).
Conclusion: N-doped TiO2 coated orthodontic brackets showed strong antimicrobial property against S. mutans over a period of 90 days, which is effective in preventing enamel decalcification during orthodontic therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139290 | PMC |
http://dx.doi.org/10.1186/s40510-018-0236-y | DOI Listing |
J Contemp Dent Pract
September 2024
Department of Orthodontic, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Aim: This study evaluates long-term shear bond strength (SBS) and enamel micro cracks (MCs) healing after using adhesive pre-coated brackets (APC).
Materials And Methods: A total of eighty extracted human premolar teeth were randomly divided into four experimental groups ( = 20 per group): Control group: Teeth underwent indentation but no bracket bonding; group II : Teeth were subjected to indentation without exposure to thermocycling; group III: Teeth experienced both indentation and thermocycling; group IV: No indentation was applied to the teeth; groups III and IV were further divided into two subgroups to simulate different clinical timelines: Subgroup A (n = 10): Teeth underwent 5,000 thermocycles, equivalent to six months of clinical use. Subgroup B (n = 10): Teeth were subjected to 10,000 thermocycles, representing 12 months of use.
Diagnostics (Basel)
December 2024
Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
The finite element method (FEM) is an advanced numerical technique that can be applied in orthodontics to study tooth movements, stresses, and deformations that occur during orthodontic treatment. It is also useful for simulating and visualizing the biomechanical behavior of teeth, tissues, and orthodontic appliances in various clinical scenarios. The objective of this research was to analyze the mechanical behavior of teeth, tissues, and orthodontic appliances in various clinical scenarios.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
Background: Proper torque control is crucial to the outcome of orthodontic treatment. This study aimed to employ finite element analysis to compare the torque capabilities of a novel spherical self-ligating bracket with a lock-hook system against those of commonly used passive self-ligating and conventional bracket systems, as well as to reveal the biomechanical changes in the periodontal ligament (PDL) during torque expression.
Methods: A maxillary right central incisor, along with its PDL and alveolar bone, were modeled.
BMC Oral Health
January 2025
Oral Technology, University Hospital Bonn, 53111, Bonn, Germany.
Background: This study aimed to evaluate the efficacy of polydopamine (PDA) functionalization on orthodontic brackets in inhibiting biofilm formation and promoting surface bioactivity to buffer the acidity of caries-causing bacteria around orthodontic brackets and prevent demineralization. The stability of the coating in artificial saliva (AS) and distilled water was evaluated, along with its effect on pH changes in simulated body fluid (SBF) and distilled water.
Methods: Maxillary incisor orthodontic brackets underwent PDA functionalization using a dopamine hydrochloride solution following a specific protocol.
Eur J Dent
December 2024
Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura City, Egypt.
Objectives: Orthodontic bracket bond failure is an obstacle in clinical orthodontics. This study investigated the influence of pH cycling on the shear bond strength (SBS), adhesive remnant index (ARI), and survival probability of adhesive-precoated flash-free ceramic brackets.
Materials And Methods: Forty mandibular premolars were randomly divided into two groups ( = 20): C: noncoated orthodontic brackets, and F: flash-free adhesive-precoated orthodontic brackets.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!