In-gap states in solar cell absorbers that are recombination centers determine the cell's photovoltaic performance. Using scanning tunneling spectroscopy (STS), temperature-dependent photoconductivity and steady-state photocarrier-grating measurements we probed, directly and indirectly, the energies of such states, both at the surface and in the bulk of two similar, but different halide perovskites, the single cation MAPbI (here MAPI) and the mixed cation halide perovskite, FAMACsPb(IBr) (here MCHP). We found a correlation between the energy distribution of the in-gap states, as determined by STS measurements, and their manifestation in the photo-transport parameters of the MCHP absorbers. In particular, our results suggest that the in-gap recombination centers in the MCHP are shallower than those of MAPI. This can be one explanation for the better photovoltaic efficiency of the former.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp03555eDOI Listing

Publication Analysis

Top Keywords

in-gap states
12
halide perovskites
8
recombination centers
8
influence multiple
4
multiple cations
4
in-gap
4
cations in-gap
4
states
4
states phototransport
4
phototransport properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!