The apparent affinity of naloxone at cerebral and spinal sites was estimated using selective mu [D-Ala2, Gly-o15]-enkephalin (DAGO) and delta [D-Pen2, D-Pen5]enkephalin] (DPDPE) opioid agonists in the mouse warm water tail-withdrawal test in vivo; the mu agonist morphine was employed as a reference compound. The approach was to determine the naloxone pA2 using a time-dependent method with both agonist and antagonist given intracerebroventricularly (i.c.v.) or intrathecally (i.th.); naloxone was always given 5 min before the agonist. Complete time-response curves were determined for each agonist at each site in the absence, and in the presence, of a single, fixed i.c.v. or i.th. dose of naloxone. From these i.c.v. or i.th. pairs of time-response curves, pairs of dose-response lines were constructed at various times; these lines showed decreasing displacement with time, indicative of the disappearance of naloxone. The graph of log (dose ratio-1) vs. time was linear with negative slope, in agreement with the time-dependent form of the equation for competitive antagonism. From this plot, the apparent pA2 and naloxone half-life was calculated at each site and against each agonist. The affinity of naloxone was not significantly different when compared between agonists after i.c.v. administration. A small difference was seen between the affinity of i.th. naloxone against DPDPE and DAGO; the i.th. naloxone pA2 against morphine, however, was not different than that for DPDPE and DAGO. The naloxone half-life varied between 6.6 and 16.9 min, values close to those previously reported for this compound. These results suggest that the agonists studied may produce their i.c.v. analgesic effects at the same receptor type or that alternatively, the naloxone pA2 may be fortuitously similar for mu and delta receptors in vivo. Additionally, while the affinity of naloxone appears different for the receptors activated by i.th. DAGO and DPDPE, further work may be necessary before firm conclusions regarding the nature of the spinal analgesic receptor(s) can be drawn.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0024-3205(86)90099-8DOI Listing

Publication Analysis

Top Keywords

affinity naloxone
16
naloxone
13
naloxone pa2
12
ith naloxone
12
receptors vivo
8
time-response curves
8
icv ith
8
naloxone half-life
8
dpdpe dago
8
ith
6

Similar Publications

Opioid-induced respiratory depression: clinical aspects and pathophysiology of the respiratory network effects.

Am J Physiol Lung Cell Mol Physiol

December 2024

The author is retired. The positions and affiliations are those prior to his retirement.

Important insights and consensus remain lacking for risk prediction of opioid-induced respiratory depression (OIRD), reversal of respiratory depression (RD), the pathophysiology of OIRD, and which sites make the most significant contribution to its induction. The ventilatory response to inhaled carbon dioxide is the most sensitive biomarker of OIRD. To accurately predict respiratory depression (RD), a multivariant RD prospective trial using continuous capnograph and oximetry examining 5 independent variables: age ≥60, sex, opioid naivety, sleep disorders, and chronic heart failure (PRODIGY trial), was undertaken.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on assessing the impact of buprenorphine-naloxone on mortality and remission rates among patients with opioid use disorder (OUD), amidst rising opioid-related deaths in the U.S.
  • Using data from nearly 92 million medical records, the research compares outcomes between patients treated with buprenorphine-naloxone and a control group not receiving this treatment.
  • Findings indicate that patients on buprenorphine-naloxone experienced 34% fewer deaths and approximately 1.9 times higher remission rates compared to those who did not receive the medication.
View Article and Find Full Text PDF

Pathological anxiety is among the most common psychiatric disorders. Despite advancements, predominant pharmacological treatments can lead to physical, chemical, and psychological dependence. Venoms of arthropods are important sources of neuroactive peptides with potential therapeutic applications for the treatment of neurological disorders.

View Article and Find Full Text PDF

The opioid crisis is a catastrophic health emergency catalyzed by the misuse of opioids that target and activate the mu opioid receptor. Traditional radioligands used to study the mu opioid receptor are often tightly regulated owing to their abuse and respiratory depression potential. In the present study, we sought to design and characterize a library of 24 non-agonist ligands for the mu opioid receptor.

View Article and Find Full Text PDF

Synthetic opioids have disrupted conventional wisdom for treating opioid overdose.

Drug Alcohol Depend Rep

September 2024

Indivior, Inc., N, Chesterfield, VA 23235, United States.

More than 90 % of opioid overdose deaths in North America are now caused by synthetic opioids, and while they are not as prevalent in the European illicit drug market, there are indications that they may become so in the near future. Multiple publications have argued that neither higher doses of naloxone nor more potent opioid receptor antagonists are needed to reverse a synthetic opioid overdose. However, the unique physicochemical properties of synthetic opioids result in a very rapid onset of respiratory depression compared to opium-based molecules, reducing the margin of opportunity to reverse an overdose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!