Numerous marine and terrestrial species have shifted their ranges poleward in response to warming from global climate change. However, few studies have examined range shifts of subtidal benthic communities in estuarine and nearshore waters. This study examined 20 years (1990-2010) of occurrence and abundance data of soft-bottom, benthic invertebrates along the Atlantic coast of the USA. Data from two biogeographic provinces (Carolinian and Virginian), which spanned 15° of latitude from mid-Florida to Cape Cod, were extracted from a national coastal assessment program. Mean water temperatures increased significantly during the study period, bottom water by 1.6 °C and surface water by 1.7 °C. Of 25 species with significant changes in centers of abundance (out of the 30 most prevalent), 18 (60%) shifted northward and 7 (23%) shifted southward. Species that shifted north moved an average distance of 181 km, in contrast with 65 km for species that shifted south. The southern limits of 22 species showed significant northward shifts; because there was little change in northern limits, this resulted in an average 25% range contraction. Community composition changed during the study period, most notably in southern latitudes. Five Carolinian species surmounted their northerly biogeographic boundary. Consequences of these range shifts include changes in benthic community structure and function, which have strong implications for ecosystem functioning and services including changes in fisheries dependent upon benthic prey.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134851 | PMC |
http://dx.doi.org/10.1007/s12237-017-0236-z | DOI Listing |
Sci Rep
December 2024
Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
This study investigates the potential impacts of climate change on the distribution of Iranian amphibian species and identifies refugia and biodiversity hotspots to inform effective conservation strategies. The study employed ensemble species distribution models to assess the impacts of climate change on 19 Iranian amphibian species. We analyzed future scenarios (2041-2060 & 2081-2100) under a high-emission pathway to identify potential range shifts and refugia (areas with stable or newly suitable climate).
View Article and Find Full Text PDFNat Commun
December 2024
Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
Short tandem repeats (STRs) have emerged as important and hypermutable sites where genetic variation correlates with gene expression in plant and animal systems. Recently, it has been shown that a broad range of transcription factors (TFs) are affected by STRs near or in the DNA target binding site. Despite this, the distribution of STR motif repetitiveness in eukaryote genomes is still largely unknown.
View Article and Find Full Text PDFEcol Lett
January 2025
Aquatic Ecology and Evolution, University of Konstanz, Konstanz, Germany.
Evolutionary change within community members and shifts in species composition via species sorting contribute to community and trait dynamics. However, we do not understand when and how both processes contribute to community dynamics. Here, we estimated the contributions of species sorting and evolution over time (60 days) in bacterial communities of 24 species under selection by a ciliate predator.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, Lund University, Lund, Sweden.
The daily transition between day and night, known as the diel cycle, is characterised by significant shifts in environmental conditions and biological activity, both of which can affect crucial ecosystem functions like pollination. Despite over six decades of research into whether pollination varies between day and night, consensus remains elusive. We compiled the evidence of diel pollination from 135 studies with pollinator exclusion experiments involving 139 angiosperms.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Department of Biological Sciences, Virtual University of Pakistan, 55150 Lahore, Punjab, Pakistan.
Background: Vertebrae protein-coding genes exhibit remarkable diversity and are organized into many gene families. These gene families have emerged through various gene duplication events, the most prominent being the two rounds of whole-genome duplication (WGD). The current research project analyzed a unique class of genes called "singletons".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!