Purpose: This study aimed to assess the feasibility to plan and deliver highly heterogeneous doses to symptomatic large tumors using volumetric modulated arc therapy (VMAT) and simultaneous integrated boost (SIB) during a short course palliative accelerated radiotherapy.
Methods: A patient with a large symptomatic chordoma infiltrating the right gluteal region was selected. A modified SIB treatment was implemented to irradiate the central volume of the tumor (boost target volume, BTV) up to 10 Gy/fraction in a dose escalation trial while maintaining the remaining tumor volume (planning target volume, PTV) and the surrounding healthy tissues within 5 Gy/fraction in twice daily fractions for two consecutive days. Four SIB plans were generated in the dual-arc modality; a basal dose of 20 Gy was prescribed to the PTV, while the BTV was boosted up to 40 Gy. For comparison purposes, plans obtained with a sequential boost (SEQ plans) were also generated. All plans were optimized to deliver at least 95% of the prescription dose to the targets. Dose contrast index (DCI), conformity index (CI), integral dose (ID), and the irradiated body volumes at 5, 10, and 20 Gy were evaluated.
Results: At equal targets coverage, SIB plans provided major improvement in DCI, CI, and ID with respect to SEQ plans. When BTV dose escalated up to 200% of PTV prescription, DCI resulted in 66% for SIB plans and 37% for SEQ plans; the ID increase was only 11% for SIB plans (vs 27% for SEQ plans) and the increase in healthy tissues receiving more than 5, 10, and 20 Gy was less than 2%. Pretreatment dose verification reported a γ-value passing rate greater than 95% with 3%(global)-2 mm.
Conclusion: A modified SIB technique is dosimetrically feasible for large tumors, where doses higher than the tolerance dose of healthy tissues are necessary to increase the therapeutic gain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236838 | PMC |
http://dx.doi.org/10.1002/acm2.12427 | DOI Listing |
Rep Pract Oncol Radiother
December 2024
Department of Radiation Oncology, Medical College and Hospital, Kolkata, India.
Background: Radiation dermatitis (RD) or skin toxicity is one of the most common acute side effects of radiation in head and neck cancer patients. This study aims to correlate the pattern of volumetric-modulated arc therapy (VMAT) dose distribution to the skin with the grades of RD.
Materials And Methods: 80 plans of histopathologically proven squamous cell carcinoma head and neck patients already treated with definitive concurrent chemoradiation [66-70 Gy in 33-35# or 66 Gy in 30# in simultaneous integrated boost (SIB), with concurrent Cisplatin 100 mg/m 3 weekly] at our institution between November 2022 and November 2023 were retrieved from our digital archives.
J Contemp Brachytherapy
October 2024
Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy.
Purpose: This systematic review aimed to assess the feasibility, safety, and efficacy of using modern external beam radiotherapy (EBRT) techniques, such as intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic body radiotherapy (SBRT) as alternative approaches to brachytherapy (BRT) in adjuvant treatment of endometrial cancer (EC).
Material And Methods: A systematic review was conducted following PRISMA guidelines. The research question was framed using the PICO method, focusing on patients with EC [P] and comparing modern EBRT techniques (IMRT, VMAT, SBRT) [I] vs.
Gigascience
January 2024
Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions.
View Article and Find Full Text PDFJ Appl Clin Med Phys
December 2024
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Purpose: Optimal head-and-neck cancer (HNC) treatment planning requires accurate and feasible planning goals to meet dosimetric constraints and generate robust online adaptive treatment plans. A new x-ray-based adaptive radiotherapy (ART) treatment planning system (TPS) version 2.0 emulator includes novel methods to drive the planning process including the revised intelligent optimization engine algorithm (IOE2).
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2024
Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA.
Purpose: To demonstrate the ease and feasibility that hippocampal sparing whole brain (WB) simultaneous integrated boost (HSWB-SIB) plans can be generated using knowledge-based planning and Eclipse Scripting Application Programming Interface (ESAPI) for three different modalities, HyperArc on TrueBeam (TB-HA), a coplanar beam arrangement on TrueBeam (TB-Co), and the ring-mounted Halcyon LINAC (Hal).
Methods: Twelve patients with 2-14 brain metastases were retrospectively replanned for HSWB-SIB using a published HSWB RapidPlan model with modifications for the automated addition of SIB to metastases. Prescribed dose was 30 Gy to the WB planning target volume (PTV) and 50 Gy to the metastases in 10 fractions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!