Positron Emission Tomography (PET) imaging has an enormous potential to improve radiation therapy treatment planning offering complementary functional information with respect to other anatomical imaging approaches. The aim of this study is to develop an operator independent, reliable, and clinically feasible system for biological tumour volume delineation from PET images. Under this design hypothesis, we combine several known approaches in an original way to deploy a system with a high level of automation. The proposed system automatically identifies the optimal region of interest around the tumour and performs a slice-by-slice marching local active contour segmentation. It automatically stops when a "cancer-free" slice is identified. User intervention is limited at drawing an initial rough contour around the cancer region. By design, the algorithm performs the segmentation minimizing any dependence from the initial input, so that the final result is extremely repeatable. To assess the performances under different conditions, our system is evaluated on a dataset comprising five synthetic experiments and fifty oncological lesions located in different anatomical regions (i.e. lung, head and neck, and brain) using PET studies with 18F-fluoro-2-deoxy-d-glucose and 11C-labeled Methionine radio-tracers. Results on synthetic lesions demonstrate enhanced performances when compared against the most common PET segmentation methods. In clinical cases, the proposed system produces accurate segmentations (average dice similarity coefficient: 85.36 ± 2.94%, 85.98 ± 3.40%, 88.02 ± 2.75% in the lung, head and neck, and brain district, respectively) with high agreement with the gold standard (determination coefficient R = 0.98). We believe that the proposed system could be efficiently used in the everyday clinical routine as a medical decision tool, and to provide the clinicians with additional information, derived from PET, which can be of use in radiation therapy, treatment, and planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2018.09.002 | DOI Listing |
Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.
View Article and Find Full Text PDFBiomacromolecules
January 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, PR China.
Biomolecular motors are dynamic systems found in organisms with high energy conversion efficiency. FF-ATPase is a rotary biomolecular motor known for its near 100% energy conversion efficiency. It utilizes the synthesis and hydrolysis of ATP to induce conformational changes in motor proteins, thereby converting chemical energy into mechanical motion.
View Article and Find Full Text PDFIntern Med J
January 2025
Crohn's Colitis Cure, Sydney, New South Wales, Australia.
Background: The burden of inflammatory bowel disease (IBD) is often reported on from a system or cost viewpoint. We created and explored a novel patient-perceived burden of disease (PPBoD) score in a large Australasian cohort.
Aim: To create and explore a novel patient-perceived burden of disease (PPBoD) score in a large Australasian cohort, and correlate PPBoD scores with demographics, disease and treatment factors.
Mil Med
January 2025
Division of Gynecologic Oncology, Department of Gynecologic Surgery & Obstetrics, Tripler Army Medical Center, Honolulu, HI 96859, USA.
Endometrial cancer is the most prevalent gynecologic cancer in the United States and has rising incidence and mortality. Endometrial intraepithelial neoplasia or atypical endometrial hyperplasia (EIN-AEH), a precancerous neoplasm, is surgically managed with hysterectomy in patients who have completed childbearing because of risk of progression to cancer. Concurrent endometrial carcinoma (EC) is also present on hysterectomy specimens in up to 50% of cases.
View Article and Find Full Text PDFAdv Mater
January 2025
Príncipe Felipe Research Center, Polymer Therapeutics Lab., Valencia, 46012, Spain.
Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!