Colorectal cancer is one of the most frequently diagnosed cancers worldwide. Gut flora can modulate the host response to chemotherapeutic drugs. However, the understanding regarding the relationship between the gut microbiota and the antitumor efficacy of 5- Fluorouracil (5-FU) treatment is limited. Therefore, we compared the tumor size and profiled the gut microbiota of mice treated with 5-FU, combined with probiotics or ABX (an antibiotic cocktail of antibiotics) by using the Colorectal Cancer (CRC) mouse model and high-throughput sequencing. The results elucidated that ABX administration diminished the antitumor efficacy of 5-FU in mice and supplementation of probiotics upon 5-FU treatment could not significantly increase the efficacy of 5-FU treatment, despite improving mice body weight at day 33. There were significant differences in fecal bacteria community among the four groups (ANOSIM p < 0.05). ABX administration reduced microbiota biodiversity and altered microbiota community. The pathogenic bacteria included Escherichia shigella and Enterobacter significantly increased, while other commensal bacterial decreased unidentified Firmicutes increased and the opportunistic pathogens decreased after the administration of Probiotics. In addition, 5-FU treatment also changed the diversity and the community composition of the gut mirobiota. The relative abundance of genus Lachnospiracea_NK4 A136, Bacteroides, Odoribacter, Mucispirillum, and Blautia were significantly increased compared to the control group. Additionally, functional capacity analysis of gut microbiota using PICRUSt showed that genes involved in amino acid metabolism, replication and repair translation, nucleotide metabolism expressed much lower in FU.ABX group than the other groups. The current results suggest that ABX administration disrupted the gut microbiota in mice, which contributed to the reduction of antitumor efficacy of 5-FU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2018.08.165 | DOI Listing |
Chin Med
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
Background: Recurrent vaginitis in conjunction with urinary tract infection (RV/UTI) in perimenopausal women is a common clinical condition that impacts both doctors and patients. Its pathogenesis is not completely known, but the urogenital microbiota is thought to be involved. We compared the urogenital and gut microbiotas of perimenopausal women experiencing RV/UTI with those of age-matched controls to provide a new microbiological perspective and scheme for solving clinical problems.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: Immune checkpoint inhibitors (ICIs) in combination with antiangiogenic drugs have shown promising outcomes in the third-line and subsequent treatments of patients with microsatellite stable metastatic colorectal cancer (MSS-mCRC). Radiotherapy (RT) may enhance the antitumor effect of immunotherapy. However, the effect of RT exposure on patients receiving ICIs and targeted therapy remains unclear.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.
View Article and Find Full Text PDFDev Cell
December 2024
Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:
The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!