In this study, a rapid and sensitive method for detection of Escherichia coli O157:H7 using the coaxial channel-based DNA extraction and the microfluidic PCR was proposed and verified. The magnetic silica beads were first pumped into the coaxial channel, which was captured in the coaxial channel more uniformly by applying the multiring high-gradient magnetic field. After the E. coli O157:H7 cells were lysed with the lysis buffer to release the DNA, the improved coaxial channel was used to efficiently extract the DNA, followed by washing with ethanol to remove the residual proteins and eluting with a small volume of deionized water to obtain the purified and concentrated DNA. Finally, the obtained DNA was amplified and determined using the microfluidic PCR. This proposed bacteria detection method was able to detect E. coli O157:H7 as low as 12 cfu/mL when the large volume (10 mL) of bacterial sample was used, and the recovery of E. coli O157:H7 in the spiked milk samples ranged from 97.4 to 100.6%. This proposed bacteria detection method has shown great potential to detect lower concentration of E. coli O157:H7 from larger volumes of sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2018-14730 | DOI Listing |
Int J Biol Macromol
October 2024
Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
Foodborne Pathog Dis
July 2024
Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Concepción, Chile.
Zhonghua Liu Xing Bing Xue Za Zhi
August 2022
Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
To evaluate the typing and clinical application effect based on clustered regularly interspaced short palindromic repeats (CRISPRs), serotype, and Multilocus Sequence Typing (MLST). The spacers, serotype and sequence type (ST) were obtained with CRISPRsFinder, SeroTypeFinder and MLST. PCR was used to amplify the CRISPRs, and the spacers were used to predict serotype and ST, then comparing with the serotype and ST.
View Article and Find Full Text PDFRSC Adv
January 2022
College of Artificial Intelligence, Guangdong Mechanical & Electrical Polytechnic Guangzhou 510550 P. R. China +86-20-36552429 +86-20-36552429.
Rapid measurement of waterborne bacterial viability is crucial for ensuring the safety of public health. Herein, we proposed a colorimetric assay for rapid measurement of waterborne bacterial viability based on a difunctional gold nanoprobe (dGNP). This versatile dGNP is composed of bacteria recognizing parts and signal indicating parts, and can generate color signals while recognizing bacterial suspensions of different viabilities.
View Article and Find Full Text PDFCan J Microbiol
September 2021
Department of Food Engineering, Beytepe, Hacettepe University, Ankara, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!