Combined encapsulation of a tumor antigen and immune cells using a self-assembling immunostimulatory DNA hydrogel to enhance antigen-specific tumor immunity.

J Control Release

Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan. Electronic address:

Published: October 2018

Our previous study demonstrated that the incorporation of a tumor antigen into a self-assembling DNA hydrogel, comprised of a DNA containing un-methylated cytosine-phosphate-guanine (CpG) dinucleotides (CpG DNA), efficiently induced antigen-specific tumor immunity after intra-tumoral injection into tumor-bearing mice. We hypothesized that the additional incorporation of immune cells, the target for the antigen and immunostimulatory CpG DNA, would increase the antitumor response. To prove this, immune cells were also encapsulated into the CpG DNA hydrogel and delivered along with the antigen. Mouse dendritic DC2.4 cells maintained their form even after incorporation into the DNA hydrogel. The incorporation of mouse macrophage-like J774.1 cells and RAW264.7 cells into CpG DNA hydrogel did not significantly affect their viability. J774.1, RAW264.7, DC2.4, and mouse bone marrow-derived dendritic cells (BMDCs) were efficiently activated when incorporated into the CpG DNA hydrogel. The CpG DNA hydrogel incorporated with both the tumor antigen and BMDCs effectively induced antigen-specific immune responses, and retarded tumor growth following intradermal administration before and after tumor inoculation without severe local and systemic adverse events. These data indicate that the combined delivery of a tumor antigen and immune cells using an immunostimulatory CpG DNA hydrogel is effective in inducing antigen-specific antitumor immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2018.09.007DOI Listing

Publication Analysis

Top Keywords

dna hydrogel
32
cpg dna
28
tumor antigen
16
immune cells
16
dna
11
tumor
8
antigen immune
8
cells
8
hydrogel
8
antigen-specific tumor
8

Similar Publications

Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs.

View Article and Find Full Text PDF

GelMA Hydrogels Integrated With aptamer CH6-Functionalized Tetrahedral DNA Nanostructures for Osteoporotic Mandibular Regeneration.

Macromol Biosci

January 2025

Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.

Osteoporotic bone regeneration is challenging due to impaired bone formation. Tetrahedral DNA nanostructures (TDN), promising nucleic acid nanomaterials, have garnered attention for their potential in osteoporotic mandibular regeneration owing to their ability to enhance cellular activity and promote osteogenic differentiation. Osteoblasts play a critical role in bone regeneration; however, intracellular delivery of TDN into osteoblasts remains difficult.

View Article and Find Full Text PDF

Deciphering the most promising strategy for the evolution of cancer patient management remains a multifaceted, challenging affair to date. Additionally, such approaches often lead to microbial infections as side effects, probably due to the compromised immunity of the patients undergoing such treatment. Distinctly, this work delineates a rational combinatorial strategy harnessing stereogenic harmony in the diphenylalanine fragment, tethering it to an amphiphile 12-hydroxy-lauric acid at the N-terminus (compounds -) such that a potential therapeutic could be extracted out from the series.

View Article and Find Full Text PDF

Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.

View Article and Find Full Text PDF

Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels.

Biophys Rev

December 2024

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.

Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!