Effective B cell activation in vitro during viremic HIV-1 infection with surrogate T cell stimulation.

Immunobiology

Mucosal and Vaccine Research Program Colorado (MAVRC), United States; Departments of Medicine, University of Colorado Denver, Aurora, CO, United States; Denver Veterans Affairs Medical Center, Denver, CO, United States. Electronic address:

Published: December 2018

Identifying HIV-1-associated B cell defects and responses to activation may direct interventions to circumvent their impaired antibody responses to infection and vaccines. Among 34 viremic HIV-1-infected and 20 seronegative control adults, we measured baseline frequencies and activation of B and T cell subsets, expression of activation-induced cytidine deaminase (AID), potential determinants of B cell activation in vivo and B and T cell responses in vitro. At baseline, HIV-1 infection was associated with increased IgM memory and decreased anergic cell frequencies, as well as increased activation in all 10 B cell subsets compared with controls. HIV-1 status, T activation, and BAFF were significant potential drivers of B cell activation. Despite high baseline activation among HIV-1-infected subjects, stimulation in vitro with combined surrogates for antigen (anti-IgM), cognate (CD40 ligand) and soluble T cell factors (IL-4) elicited comparable B cell activation, transitions from naïve to class-switched memory cells and AID expression in both groups. In summary, viremic HIV-1 infection perturbs circulating B cell subsets and activation at each stage of B cell maturation. However, that appropriate stimulation of B cells elicits effective activation and maturation provides impetus for advancing vaccine development to prevent secondary infections by circumventing early B cell defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264910PMC
http://dx.doi.org/10.1016/j.imbio.2018.08.007DOI Listing

Publication Analysis

Top Keywords

cell activation
16
cell
13
hiv-1 infection
12
cell subsets
12
activation
11
viremic hiv-1
8
cell defects
8
activation cell
8
effective cell
4
activation vitro
4

Similar Publications

To efficiently capture, activate, and transform small molecules, metalloenzymes have evolved to integrate a well-organized pocket around the active metal center. Within this cavity, second coordination sphere functionalities are precisely positioned to optimize the rate, selectivity, and energy cost of catalytic reactions. Inspired by this strategy, an artificial distal pocket defined by a preorganized 3D strap is introduced on an iron-porphyrin catalyst (sc-Fe) for the CO-to-CO electrocatalytic reduction.

View Article and Find Full Text PDF

Aim: This study was conducted to evaluate the in vitro effects of hydroxychloroquine (HCQ) on histone deacetylase (HDAC) enzyme activity and interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) expression. HDAC enzyme activity and the expression of inflammation markers were tested, with the presence of the HDAC inhibitor valproic acid, in human primary cell cultures prepared from two different tissues.

Material And Methods: Primary cell cultures were prepared.

View Article and Find Full Text PDF

Aim: St. John\'s Wort Oil (JWO) has a sedative property and it is used traditionally for the treatment of depression, neuralgia and excitability. JWO has been shown to have anticancer activity via apoptosis in glioblastoma cells.

View Article and Find Full Text PDF

Thyroid-Targeted Nano-Bombs Empower HIFU for Graves' Disease.

Adv Sci (Weinh)

January 2025

The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.

Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.

View Article and Find Full Text PDF

In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!