Lipoylation is a highly conserved post-translational modification which has been found to be involved in many biological processes and closely associated with various metabolic diseases. The accurate identification of lipoylation sites is necessary to elucidate the underlying molecular mechanisms of lipoylation. As the traditional experimental methods are time consuming and expensive, it is desired to develop computational methods to predict lipoylation sites. In this study, a novel predictor named LipoPred is proposed to predict lysine lipoylation sites. On the one hand, an effective feature extraction method, bi-profile bayes encoding, is employed to encode lipoylation sites. On the other hand, a fuzzy support vector machine algorithm is proposed to solve the class imbalance and noise problem in the prediction of lipoylation sites. As illustrated by 10-fold cross-validation, LipoPred achieves an excellent performance with a Matthew's correlation coefficient of 0.9930. Therefore, LipoPred can be a useful bioinformatics tool for the prediction of lipoylation sites. Feature analysis shows that some residues around lipoylation sites may play an important role in the prediction. The results of analysis and prediction could offer useful information for elucidating the molecular mechanisms of lipoylation. A user-friendly web-server for LipoPred is established at 123.206.31.171/LipoPred/.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2018.09.007DOI Listing

Publication Analysis

Top Keywords

lipoylation sites
32
lipoylation
11
lysine lipoylation
8
sites
8
bi-profile bayes
8
feature extraction
8
fuzzy support
8
support vector
8
vector machine
8
machine algorithm
8

Similar Publications

Inducers of Autophagy and Cell Death: Focus on Copper Metabolism.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:

Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.

View Article and Find Full Text PDF

Palmitoylation-dependent association with Annexin II directs hepatitis E virus ORF3 sorting into vesicles and quasi-enveloped virions.

Proc Natl Acad Sci U S A

January 2025

Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Primary biliary cholangitis (PBC) is a chronic disease, the prevalence of which has been increasing in recent years. And the prevalence of patients who test negative with existing diagnostic techniques remains high. It was found that the antigenic BCOADC-E2 protein could detect patients with a negative original test.

View Article and Find Full Text PDF

ZDHHC20 mediated S-palmitoylation of fatty acid synthase (FASN) promotes hepatocarcinogenesis.

Mol Cancer

December 2024

Center for Intelligent Oncology, Chongqing University Cancer Hospital and Chongqing University School of Medicine, and Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing, 400030, China.

Background: Protein palmitoylation is a reversible fatty acyl modification that undertakes important functions in multiple physiological processes. Dysregulated palmitoylations are frequently associated with the formation of cancer. How palmitoyltransferases for S-palmitoylation are involved in the occurrence and development of hepatocellular carcinoma (HCC) is largely unknown.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is a common histological subtype of malignant renal neoplasm. Protein lysine lactylation (Kla) plays a crucial role in tumor metabolic reprogramming. However, little is known regarding the distribution and potential biological functions of Kla in ccRCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!