UBC13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity remain to be defined. Here we used genetic and pathological methods to evaluate roles of Arabidopsis UBC13 in response to pathogens and environmental stresses. Loss of UBC13 failed to activate the expression of numerous cold-responsive genes and resulted in hypersensitivity to low-temperature stress, indicating that UBC13 is involved in plant response to low-temperature stress. Furthermore, the ubc13 mutant displayed low-temperature-induced and salicylic acid-dependent lesion mimic phenotypes. Unlike typical lesion mimic mutants, ubc13 did not enhance disease resistance against virulent bacterial and fungal pathogens, but diminished hypersensitive response and compromised effector-triggered immunity against avirulent bacterial pathogens. UBC13 differently regulates two types of programmed cell death in response to low temperature and pathogen. The lesion mimic phenotype in the ubc13 mutant is partially dependent on SNC1. UBC13 interacts with an F-box protein CPR1 that regulates the homeostasis of SNC1. However, the SNC1 protein level was not altered in the ubc13 mutant, implying that UBC13 is not involved in CPR1-regulated SNC1 protein degradation. Taken together, our results revealed that UBC13 is a key regulator in plant response to low temperature and pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15435DOI Listing

Publication Analysis

Top Keywords

low-temperature stress
12
ubc13
12
ubc13 mutant
12
lesion mimic
12
arabidopsis ubc13
8
programmed cell
8
cell death
8
stress ubc13
8
ubc13 involved
8
plant response
8

Similar Publications

Background: Lavandula angustifolia Mill., a valuable aromatic plant, often encounters low temperature stress during its growth in Northeast China. Understanding the mechanisms behind its resistance to low temperatures is essential for enhancing this trait.

View Article and Find Full Text PDF

Under confining pressure, rocks transition from brittle failure to plastic failure, and residual strength exists after complete failure. However, in the process of establishing rock damage constitutive models, the strength criteria used usually do not consider residual stress. In cold region engineering, the freeze-thaw effect caused by temperature changes should be considered in the constitutive model, and strength criteria should also be introduced.

View Article and Find Full Text PDF

Extreme climate events, particularly droughts, pose significant threats to vegetation, severely impacting ecosystem functionality and resilience. However, the limited temporal resolution of current satellite data hinders accurate monitoring of vegetation's diurnal responses to these events. To address this challenge, we leveraged the advanced satellite ECOSTRESS, combining its high-resolution evapotranspiration (ET) data with a LightGBM model to generate the hourly continuous ECOSTRESS-based ET (HC-ET) for the middle and lower reaches of the Yangtze River Basin (YRB) from 2015 to 2022.

View Article and Find Full Text PDF

RNA plays important roles in the regulation of gene expression in response to environmental stimuli. , a long noncoding cis-natural antisense RNA, is a key component of regulating the response to cold temperature in . There are three mechanisms through which fine tunes the transcriptional response to cold temperatures.

View Article and Find Full Text PDF

Multi-Omics Analysis Provides Insights into Green Soybean in Response to Cold Stress.

Metabolites

December 2024

Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China.

Green soybean ( (L.) Merrill) is a highly nutritious food that is a good source of protein and fiber. However, it is sensitive to low temperatures during the growing season, and enhancing cold tolerance has become a research hotspot for breeding improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!