A composite consisting of graphene oxide and gold nanorods (GO-GNRs) was designed for the trace determination of hepatitis B surface antigen (HBsAg) using surface enhanced Raman spectroscopy (SERS). GO contains numerous carboxy and hydroxy groups on its surface and therefore can serve as the substrate for decoration with GNRs and for immobilizing antibody against HBsAg. The GNRs (carrying the SERS probe 2-mercaptopyridine) exhibit high SERS activity, and this improves the sensitivity of the biosensor. The antibody on the GO-GNRs binds HBsAg with high specificity, and it results in excellent selectivity. The SERS signal (measured at 1002 cm) increases in the 1-1000 pg·mL HBsAg concentrations range, and the limit of detection is 0.05 pg·mL (at an S/N ratio of 3). The immunoassay achieves the sensitive and selective determination of HBsAg in serum and expands the potential application of GO-GNR based SERS tag in clinical research. Graphical abstract A novel graphene oxide-gold nanorod (GO-GNRs) based surface-enhanced Raman scattering (SERS) tag for immunoassay was designed. It allows for sensitive and selective determination of HBsAg in serum. The method is expected to expand the potential application in the environment, in medicine and in food analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-018-2989-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!