Graphene quantum dots-based nano-biointerface platform for food toxin detection.

Anal Bioanal Chem

CSIR-National Physical Laboratory, Dr. K.S.Krishnan Marg, New Delhi, 110012, India.

Published: November 2018

Due to the similar electrochemical properties to graphene oxide (GO), graphene quantum dots (GQDs) are considered as a highly potential candidate for designing an electrochemical biosensor. In this report, GQDs were synthesized having an average diameter of 7 nm and utilized for the fabrication of an electrochemical immunosensor for the detection of food toxin, aflatoxin B (AFB). An electrophoretic deposition technique was utilized to deposit the chemically synthesized GQDs onto indium tin oxide (ITO)-coated glass substrate. Further, the monoclonal antibodies of AFB were covalently immobilized onto deposited electrode GQDs/ITO using EDC-NHS as a crosslinker. The structural and morphological studies of GQDs and conjugated anti-AFB with GQDs have been investigated using UV-visible spectroscopy, photoluminescence spectroscopy, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy techniques, etc. The electrochemical impedance spectroscopy and cyclic voltammetry measurements were carried out for electrical characterization and biosensing studies. This simple monodisperse GQDs-based platform yields heterogeneous electron transfer (97.63 × 10 cm s), the time constant (0.005 s) resulting in improved biosensing performance. The electrochemical immunosensor shows high sensitivity 213.88 Ω (ng mL) cm. The limit of detection for standard samples and contaminated maize samples was found to be 0.03 ng mL and 0.05 ng g, respectively, which is lower than the maximum acceptable limit according to the European Union. This result indicates its potential application for aflatoxin B detection in food contents. Graphical abstract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-018-1341-yDOI Listing

Publication Analysis

Top Keywords

graphene quantum
8
food toxin
8
detection food
8
electron microscopy
8
gqds
5
quantum dots-based
4
dots-based nano-biointerface
4
nano-biointerface platform
4
platform food
4
detection
4

Similar Publications

Strong Enhancement of Light Emission in Core-Shell InGaN/GaN Multi-Quantum-Well Nanowire Light-Emitting Diodes by Incorporating Graphene Quantum Dots.

ACS Appl Mater Interfaces

January 2025

Department of Applied Physics and Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Korea.

One-dimensional (1D) vertical nitrides are highly attractive for light-emitting diode (LED) applications because they are useful for overcoming the drawbacks of conventional GaN planar structures. However, the internal quantum efficiency (IQE) of GaN multi-quantum-well (MQW) nanowire (NW) LEDs, typical 1D GaN structures, is still too low to replace standard planar LEDs. Here, we report a phenomenon of light amplification from core-shell InGaN/GaN NW LEDs by incorporating graphene quantum dots (GQDs).

View Article and Find Full Text PDF

In-Plane Transition-Metal Dichalcogenide Junction with Nearly Zero Interfacial Band Offset.

ACS Nano

January 2025

Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, School of Physics, Advanced Research Institute of Multidisciplinary Science, and School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.

Two-dimensional in-plane transition-metal dichalcogenide (TMD) junctions have a range of potential applications in next-generation electronic devices. However, limited by the difficulties in ion implantation on 2D systems, the fabrication of the in-plane TMD junctions still relies on the lateral epitaxy of different materials, which always induces lattice mismatch and interfacial scattering. Here, we report the in-plane TMD junction formed with monolayer (ML) PtTe at the boundary of ML and bilayer graphene on SiC.

View Article and Find Full Text PDF

Atomic defects in solids offer a versatile basis to study and realize quantum phenomena and information science in various integrated systems. All-electrical pumping of single defects to create quantum light emission has been realized in several platforms including color centers in diamond and silicon carbide, which could lead to the circuit network of electrically triggered single-photon sources. However, a wide conduction channel which reduces the carrier injection per defect site has been a major obstacle.

View Article and Find Full Text PDF

Full Quantum Dynamics Study for H Atom Scattering from Graphen.

J Phys Chem A

January 2025

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.

This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).

View Article and Find Full Text PDF

Graphene quantum dot-modified CoO/NiCoO yolk-shell polyhedrons as a polysulfide-adsorptive sulfur host for lithium-sulfur batteries.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!