A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prevention of corneal neovascularization by subconjunctival injection of avastin® loaded thermosensitive hydrogels in rabbit model. | LitMetric

Prevention of corneal neovascularization by subconjunctival injection of avastin® loaded thermosensitive hydrogels in rabbit model.

Int J Pharm

Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China. Electronic address:

Published: December 2018

The antibody avastin® (Ava) has been clinically to treat various intraocular neovascular diseases, but suffering from the rapid clearance and short shelf-life of Ava in the requirement of frequent administration. In the present study, we reports the sustained release of Ava from a thermosensitive hydrogel based on poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PECE) copolymer for the control of corneal neovascularization in rabbit model. Ava were physically mixed with PECE aqueous solution at 4 °C, and resulting Ava-PECE solution showed a sol-gel transition at physiological temperature (37 °C). In vitro release study indicated that Ava-PECE hydrogel provided a sustained release of Ava up to 28 days and the drug release behavior could be finely modulated by the change of PECE concentration. A single subconjunctival injection of PECE hydrogel hardly caused the change of intraocular pressure and corneal endothelial morphology during the entire study period. Intraocular pharmacokinetic analysis suggested that the Ava-PECE hydrogel provided a relatively higher Ava concentration in cornea over Ava solution up to 14 days. In addition, anti-angiogenic effects of the Ava-PECE hydrogel in a suture-induced corneal neovascularization rabbit model indicated that the Ava-PECE hydrogel treatment exhibited superior anti-angiogenic efficacy over Ava solution treatment by decreasing the area ratio of neovascularization on 17 days. Overall, the proposed Ava-PECE hydrogel acting a sustained drug delivery system might be a promising vehicle for the treatment of corneal neovascularization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.09.017DOI Listing

Publication Analysis

Top Keywords

ava-pece hydrogel
20
corneal neovascularization
16
rabbit model
12
subconjunctival injection
8
ava
8
sustained release
8
release ava
8
neovascularization rabbit
8
indicated ava-pece
8
hydrogel provided
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!