Seminal fluid proteins elicit several post-mating physiological changes in mated Drosophila melanogaster females. Some of these changes persist for over a week after mating because the seminal protein that causes these changes, the Sex Peptide (SP), binds to sperm that are stored in the female reproductive tract. SP's sperm binding is mediated by a network of at least eight seminal proteins. We show here that some of these network proteins (CG1656, CG1652, CG9997 and Antares) bind to sperm within 2 h of mating, like SP. However, while SP remains bound to sperm at 4 days post-mating, none of the other network proteins are detectable at this time. We also observed that the same network proteins are detectable at 2 h post-mating in seminal receptacle tissue from which sperm have been removed, but are no longer detectable there by 4 days post-mating, suggesting short-term retention of these proteins in this female sperm storage organ. Our results suggest that these network proteins act transiently to facilitate the conditions for SP's binding to sperm, perhaps by modifying SP or the sperm surface, but are not part of a long-acting complex that stably attaches SP to sperm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249070PMC
http://dx.doi.org/10.1016/j.ibmb.2018.09.004DOI Listing

Publication Analysis

Top Keywords

network proteins
16
sperm
11
sex peptide
8
proteins
8
seminal proteins
8
days post-mating
8
proteins detectable
8
seminal
5
network
5
long-term interaction
4

Similar Publications

Objective: This study aims to analyze adverse drug events (ADE) related to romosozumab from the second quarter of 2019 to the third quarter of 2023 from FAERS database.

Methods: The ADE data related to romosozumab from 2019 Q2 to 2023 Q3 were collected. After data normalization, four signal strength quantification algorithms were used: ROR (Reporting Odds Ratios), PRR (Proportional Reporting Ratios), BCPNN (Bayesian Confidence Propagation Neural Network), and EBGM (Empirical Bayesian Geometric Mean).

View Article and Find Full Text PDF

Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Cell Biol Toxicol

January 2025

Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.

Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.

View Article and Find Full Text PDF

Utilising bioinformatics and systems biology methods to uncover the impact of dermatomyositis on interstitial lung disease.

Clin Exp Rheumatol

January 2025

Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Objectives: Dermatomyositis (DM) is frequently associated with interstitial lung disease (ILD); however, the molecular mechanisms underlying this association remain unclear. This study aimed to employ bioinformatics approaches to identify potential molecular mechanisms linking DM and ILD.

Methods: GSE46239 and GSE47162 were analysed to identify common differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs).

View Article and Find Full Text PDF

We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!