Persulfate (PS)-based advanced oxidation processes have aroused considerable attentions due to their higher efficiency and wider adaptability to the degradation of bio-recalcitrant organic contaminants. In this study, Cu-Fe layered doubled hydroxide (CuFe-LDH) was employed to degrade Methyl Violet (MV) through heterogeneous photo-activation of PS under visible-light irradiation. The reaction kinetics, degradation mechanism, catalyst stability were investigated in detail. Under the conditions of CuFe-LDH (3:1) dosage 0.2 g/L, PS concentration 0.2 g/L and without initial pH adjustment, 20 mg/L MV was almost completely degraded within 18 min. Electron Spin Resonance (ESR) test and radical quenching experiment indicated that sulfate radicals (SO) were the dominant reactive oxidants for the MV decolorization, while hydroxyl radicals (OH) were also involved. The CuFe-LDH/PS/Vis system was applicable at wide range of pH level (3-9). However, extreme pH level would lead to the reduction or transformation of SO. The catalyst CuFe-LDH exhibited excellent stability and maintained relatively high catalytic activity to PS even after four recycles. Mechanism study revealed that the redox cycle of Fe/Fe and Cu/Cu assisted by visible-light irradiation accounted for the enhanced generation of radicals in CuFe-LDH/PS/Vis system, resulting in the improved degradation of organic contaminants. Overall, the CuFe-LDH/PS/Vis process could be a promising approach for the removal of refractory organic pollutants in wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.08.030DOI Listing

Publication Analysis

Top Keywords

methyl violet
8
layered doubled
8
doubled hydroxide
8
organic contaminants
8
visible-light irradiation
8
cufe-ldh/ps/vis system
8
sulfate radical
4
radical induced
4
degradation
4
induced degradation
4

Similar Publications

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.

Nanomaterials (Basel)

December 2024

College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.

This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.

View Article and Find Full Text PDF

Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.

View Article and Find Full Text PDF

Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g.

View Article and Find Full Text PDF

Catheter-associated urinary tract infections (CAUTIs) cause serious complications among hospitalized patients due to biofilm-forming microorganisms which make treatment ineffective by forming antibiotic-resistant strains. As most CAUTI-causing bacterial pathogens have already developed multidrug resistance, there is an urgent need for alternative antibacterial agents to prevent biofilms on catheter surfaces. As a trial to find out such a potential agent of natural origin, the bark of Rottl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!