The main factors that affect the extraction of metals from spent lithium-ion batteries by acid leaching using HSO, and sodium metabisulphite, were evaluated and optimized through a set of experiments, framed by a techno-economic approach. The maximum value of the profit response was obtained with the highest possible values of acid concentration (2.5 M) and time (2 h), a liquid/solid ratio of 5 L/kg, and the lowest possible value of temperature (40 °C). After leaching, the electrodes active material contained in the metals decreased, while it was still significant in the graphite, as observed by scanning electron microscopy-energy dispersive spectrometry and x-ray powder diffraction. Even though the performed economic evaluation was a summarized outline it can be considered suitable to compare different leaching conditions and to determine the possible best combinations of factors that can optimize the profit response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.08.085 | DOI Listing |
Environ Res
December 2024
INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy. Electronic address:
The integration of Artificial Intelligence (AI) into the discovery of new materials offers significant potential for advancing sustainable technologies. This paper presents a novel approach leveraging AI-driven methodologies to identify a new malate structure derived from the treatment of spent lithium-ion batteries. By analysing bibliographic data and incorporating domain-specific knowledge, AI facilitated the identification and structure refinement of a new malate complex containing different metals (Ni, Mn, Co, and Cu).
View Article and Find Full Text PDFWaste Manag
December 2024
National Engineering Research Center of Green Recycling for Strategic Metal Resources, Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China. Electronic address:
Recycling of spent lithium-ion batteries has attracted worldwide attention to ensure sustainability of electric vehicle industry. Pretreatment as an essential step for recycling of spent LIBs is critical to ensure the recovery efficiency and quality of black mass which is used for further materials regeneration. Usually, high temperature pyrolysis, at around 600 °C is required during the pretreatment to achieve effective separation of the black mass that is binding on aluminium foils with polyvinylidene fluoride binder.
View Article and Find Full Text PDFWaste Manag
December 2024
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
To alleviate the energy crisis and control environmental pollution raised by spent lithium-ion batteries (LIBs), the development of efficient and economic methods for their recycling is crucial for sustainable development of new energy industry. Herein, a combined pyro - hydrometallurgical process was adopted for recovery of valuable metal elements for spent LiNiCoMnO (NCM523). Different from conventional pyrometallurgical methods with high temperature and energy consumption, the NHHSO roasting strategy works at 400 °C and achieves remarkable leaching efficiencies of Li, Co, Mn, and Ni achieved 97.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Designing efficient, scalable, and eco-friendly recycling technologies is crucial for addressing the widespread decommissioning of spent lithium-ion batteries. Here, an innovative top-down regeneration method is introduced to rejuvenate highly degraded LiFePO. Initially, the crystal structure of spent LiFePO is destroyed via the oxidation process, followed by the reconstruction of the LiFePO lattice through the reduction process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Central South University, School of Metallurgy and Environment, CHINA.
The recycling of critical metals from spent lithium-ion batteries represents a significant step towards meeting the enhancing resource requirements in the new energy industry. Nevertheless, achieving effective leaching of metals from the stable metal-oxygen (MO6) structure of spent ternary cathodes and separation of metal products simultaneously still remained a huge challenge towards industrial applications. Herein, a competitive coordination strategy was proposed to design a novel deep eutectic solvent (DESs), which improved both leaching and selective metal recycling capacity even at high solid-liquid ratio (1:10).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!