Introduction: Fetal hemoglobin (HbF) is the major modifier for sickle cell disease (SCD) severity. HbF is modulated mainly by three major quantitative trait loci (QTL) on chromosomes 2, 6, and 11.

Methods: Five SNPs in the three QTLs (HBG2, rs7482144; BCL11A, rs1427407 and rs10189857; and HBS1L-MYB intergenic region, rs28384513 and rs9399137) were investigated by multiplex PCR and reverse hybridization, and their roles in HbF and clinical phenotype variability in Iraqi Kurds with SCD were assessed.

Results: HBG2 rs7482144 with minor allele frequency (MAF) of 0.133 was the most significant contributor to HbF variability, contributing 18.1%, followed by rs1427407 (MAF of 0.266) and rs9399137 (MAF of 0.137) at 14.3% and 8.8%, respectively. The other two SNPs were not significant contributors. Furthermore, when the cumulative numbers of minor alleles in the three contributing SNPs were assessed, HbF% and hemoglobin concentration increased with increasing number of minor alleles (P < 0.0005 and 0.001, respectively), while serum lactic dehydrogenase, reticulocytes, leukocytes, transfusion, and pain frequencies decreased (P = 0.003, 0.004, <0.0005, <0.0005, and 0.017, respectively).

Conclusions: It was demonstrated that SNPs in all three major HbF QTLs contribute significantly to HbF and clinical variability in Iraqi Kurds with SCD and that the cumulative number of minor alleles at contributing SNPs may serve as a better predictor of such variability in this population.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijlh.12927DOI Listing

Publication Analysis

Top Keywords

fetal hemoglobin
8
clinical phenotype
8
iraqi kurds
8
sickle cell
8
cell disease
8
hbg2 rs7482144
8
minor alleles
8
association hbg2
4
hbg2 bcl11a
4
bcl11a hmip
4

Similar Publications

Background: Impaired intrauterine growth, a significant global health problem, contributes to a higher burden of infant morbidity and mortality, mainly in resource-poor settings. Maternal anemia and undernutrition, two important causes of impaired intrauterine growth, are prioritized by global nutrition targets of 2030. We synthesized the evidence on the role of preconception nutrition supplements in reducing maternal anemia and improving intrauterine growth.

View Article and Find Full Text PDF

Objective: The study aimed to provide clinical evidence regarding the perinatal management of HbH disease by comparing and analyzing blood routine, anemia characteristics, and their influence on pregnancy outcomes in patients with common deletional and non-deletional HbH disease at various pregnancy stages.

Patients And Methods: From May 2017 to October 2023, a comparative analysis was conducted on pregnant women undergoing treatment at the Second Affiliated Hospital of Guangxi Medical University and the Second Nanning People's Hospital. The study included 42 cases of deletional HbB disease and 32 cases of non-deletional HbH disease.

View Article and Find Full Text PDF

: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic.

View Article and Find Full Text PDF
Article Synopsis
  • The CRISPR-Cas9 system is a groundbreaking gene editing tool being researched for treating thalassemia and sickle cell disease (SCD).
  • A study reviewed clinical trials from multiple databases, identifying 6 eligible studies involving 115 patients, which used CRISPR/Cas9 to target specific gene enhancers and promoters.
  • Results showed that patients experienced increased fetal hemoglobin, improved hemoglobin levels, transfusion independence in thalassemia, and reduced pain episodes in SCD, indicating the potential of CRISPR/Cas9 as a one-time functional cure for these blood disorders.
View Article and Find Full Text PDF

The modern use of hydroxyurea for children with sickle cell anemia.

Haematologica

January 2025

Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati OH; University of Cincinnati College of Medicine, Cincinnati OH; Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati OH.

Over the past 40 years, the introduction and refinement of hydroxyurea therapy has led to remarkable progress for the care of individuals with sickle cell anemia (SCA). From initial small proof-of-principle studies to multi-center Phase 3 controlled clinical trials and then numerous open-label studies, the consistent benefits of once-daily oral hydroxyurea have been demonstrated across the lifespan. Elevated fetal hemoglobin (HbF) serves as the most important treatment response, as HbF delays sickle hemoglobin polymerization and reduces erythrocyte sickling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!