Background: Immune reconstitution inflammatory syndrome (IRIS) represents an unexpected inflammatory response shortly after initiation of antiretroviral therapy (ART) in some human immunodeficiency virus (HIV)-infected patients with underlying neoplasia or opportunistic infections, including tuberculosis. We hypothesized that IRIS is associated with increased glycolysis and that 18F-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) could help identify high-risk subjects.

Methods: In this prospective cohort study, 30 HIV-infected patients (CD4+ count <100 cells/µL) underwent FDG-PET/CT scans at baseline and 4-8 weeks after ART initiation. Ten patients developed IRIS (6 mycobacterial).

Results: At baseline, total glycolytic activity, total lesion volume, and maximum standardized uptake values (SUVs) of pathologic FDG uptake (reflective of opportunistic disease burden) were significantly higher in IRIS vs non-IRIS (P = .010, .017, and .029, respectively) and significantly correlated with soluble inflammatory biomarkers (interferon-γ, myeloperoxidase, tumor necrosis factor, interleukin 6, soluble CD14). Baseline bone marrow (BM) and spleen FDG uptake was higher in mycobacterial IRIS specifically. After ART initiation, BM and spleen mean SUV decreased in non-IRIS (P = .004, .013) but not IRIS subjects. Our results were supported by significantly higher glucose transporter 1 (Glut-1) expression of CD4+ cells and monocytes after ART initiation in IRIS/mycobacterial IRIS compared with non-IRIS patients.

Conclusions: We conclude that increased pathologic metabolic activity on FDG-PET/CT prior to ART initiation is associated with IRIS development and correlates with inflammatory biomarkers. Abnormally elevated BM and spleen metabolism is associated with mycobacterial IRIS, HIV viremia, and Glut-1 expression on CD4+ cells and monocytes.

Clinical Trials Registration: NCT02147405.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321853PMC
http://dx.doi.org/10.1093/cid/ciy454DOI Listing

Publication Analysis

Top Keywords

positron emission
8
emission tomography-computed
8
tomography-computed tomography
8
human immunodeficiency
8
immune reconstitution
8
reconstitution inflammatory
8
inflammatory syndrome
8
hiv-infected patients
8
increased metabolic
4
metabolic activity
4

Similar Publications

Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification.

View Article and Find Full Text PDF

AI-based automatic patient positioning in a digital-BGO PET/CT scanner: efficacy and impact.

EJNMMI Phys

January 2025

Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel.

Background: A recently released digital solid-state positron emission tomography/x-ray CT (PET/CT) scanner with bismuth germanate (BGO) scintillators provides an artificial intelligence (AI) based system for automatic patient positioning. The efficacy of this digital-BGO system in patient placement at the isocenter and its impact on image quality and radiation exposure was evaluated.

Method: The digital-BGO PET/CT with AI-based auto-positioning was compared (χ, Mann-Whitney tests) to a solid-state lutetium-yttrium oxyorthosilicate (digital-LYSO) PET/CT with manual patient positioning (n = 432 and 343 studies each, respectively), with results split into groups before and after the date of a recalibration of the digital-BGO auto-positioning camera.

View Article and Find Full Text PDF

Ionic Liquid Aided [C]CO Fixation for Synthesis of C-carbonyls.

ChemistryOpen

January 2025

Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, CAMH, Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.

Tributyl(ethyl)phosphonium oxopentenolate ([P][Pen]) is an ionic liquid developed to capture CO and has shown ability to catalyze carbonylation reactions in organic chemistry. Carbon-11 (C, t=20.4 min) labeled CO is a highly versatile building block for the synthesis of positron emission tomography (PET) radiotracers that are applied for medical imaging.

View Article and Find Full Text PDF

Background: Resistance to chemoimmunotherapy in patients with advanced non-small cell lung cancer (NSCLC) necessitates effective prognostic biomarkers. Although F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has shown potential for efficacy assessment, it has been mainly evaluated in immuno-monotherapy setting, lacking elaborations in the scenarios of immunotherapy combined with chemotherapy. To tackle this dilemma, we aimed to build a non-invasive PET/CT-based model for stratifying tumor heterogeneity and predicting survival in advanced NSCLC patients undergoing chemoimmunotherapy.

View Article and Find Full Text PDF

Machine learning-based radiomics for guiding lymph node dissection in clinical stage I lung adenocarcinoma: a multicenter retrospective study.

Transl Lung Cancer Res

December 2024

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Preoperative assessment of lymph node status is critical in managing lung cancer, as it directly impacts the surgical approach and treatment planning. However, in clinical stage I lung adenocarcinoma (LUAD), determining lymph node metastasis (LNM) is often challenging due to the limited sensitivity of conventional imaging modalities, such as computed tomography (CT) and positron emission tomography/CT (PET/CT). This study aimed to establish an effective radiomics prediction model using multicenter data for early assessment of LNM risk in patients with clinical stage I LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!