The chemical or elemental analysis of samples with complex surface topography is challenging for secondary ion mass spectrometry (SIMS), if the three-dimensional structure of the sample is not taken into account. Conventional 3D reconstruction of SIMS data assumes a flat surface and uniform sputtering conditions, which is not the case for many analytical applications involving micro- and nanosized particles, composites, or patterned materials. Reliable analysis of such samples requires knowledge of the actual 3D surface structure to correctly reconstruct the SIMS 3D maps. To this end, we introduce the use of photogrammetric 3D topography reconstruction from scanning helium ion microscopy (HIM) correlated with in situ SIMS data for the reconstruction of 3D SIMS data. The HIM and SIMS data are acquired under in situ conditions in a Zeiss ORION NanoFab HIM using a novel SIMS analyzer. We successfully tested the applicability of the approach to generate 3D models of different samples and show that the combination of SIMS and 3D topography is able to provide insights into the influence of the sample topography in a single instrument and with a single ion column and hence without the need for ex-situ sample analysis or additional instrumentation. These findings offer a path toward ion-based correlative 3D spectromicroscopy (3D-HIM-SIMS) and suggest that many combinations of charged particle based P3D (SEM, HIM) and analytical microscopy techniques, such as SIMS, energy-dispersive X-ray spectroscopy (EDX), or ionoluminescence/cathodoluminescence (IL/CL), can be used for correlative microscopy in 3D.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b02530DOI Listing

Publication Analysis

Top Keywords

sims data
16
sims
9
correlative microscopy
8
helium ion
8
photogrammetric topography
8
topography reconstruction
8
secondary ion
8
ion mass
8
mass spectrometry
8
analysis samples
8

Similar Publications

Analysis of time-of-flight secondary ion mass spectrometry data of human skin treated with diclofenac using sparse autoencoder.

Anal Bioanal Chem

December 2024

Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.

Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging.

View Article and Find Full Text PDF

Introduction: A physician's first patient harm event oftentimes occurs during the intern year. Residents encounter and are responsible for medical errors, yet little training is offered in how to properly cope with these events. Earlier and more in-depth education about how to process patient harm events is needed.

View Article and Find Full Text PDF

Continuous Glucose Monitoring Underreports Blood Glucose During a Simulated Ultraendurance Run in Eumenorrheic Female Runners.

Int J Sports Physiol Perform

December 2024

Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Tauranga, New Zealand.

Purpose: Continuous-glucose-monitoring (CGM) sensors provide near-real-time glucose data and have been introduced commercially as a tool to inform nutrition decisions. The aim of this pilot study was to explore how factors such as the menstrual phase, extended running duration, and carbohydrates affect CGM outcomes among trained eumenorrheic females in an outdoor simulated ultraendurance running event.

Methods: Twelve experienced female ultrarunners (age 39 [6] y) participated in this crossover study.

View Article and Find Full Text PDF

Polymeric nanoparticles surface functionalised with fluorescent molecules hold significant potential for advancing diagnostics and therapeutic delivery. Despite their promise, challenges persist in achieving robust attachment of fluorescent molecules for real-time tracking. Weak physical adsorption, pH-dependent electrostatic capture, and hydrophobic interactions often fail to achieve stable attachment of fluorescent markers.

View Article and Find Full Text PDF

Multiplexed tissue imaging (MTI) technologies enable high-dimensional spatial analysis of tumor microenvironments but face challenges with technical variability in staining intensities. Existing normalization methods, including z-score, ComBat, and MxNorm, often fail to account for the heterogeneous, right-skewed expression patterns of MTI data, compromising signal alignment and downstream analyses. We present UniFORM, a non-parametric, Python-based pipeline for normalizing both feature- and pixel-level MTI data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!