A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust Hund rule without Coulomb repulsion and exclusion principle in quantum antiferromagnetic chains of composite half spins. | LitMetric

Robust Hund rule without Coulomb repulsion and exclusion principle in quantum antiferromagnetic chains of composite half spins.

J Phys Condens Matter

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America.

Published: October 2018

Quantum spin chains with composite spins have been used to approximate conventional chains with higher spins. For instance, a spin 1 (or [Formula: see text]) chain was sometimes approximated by a chain with two (or three) spin [Formula: see text]'s per site. However, little examination has been given as to whether this approximation, effectively assuming the first Hund rule per site, is valid and why. In this paper, the validity of this approximation is investigated numerically. We diagonalize the Hamiltonians of spin chains with a spin 1 and [Formula: see text] per site and with two and three spin [Formula: see text]'s per site. The low energy excitation spectrum for the spin chain with M spin [Formula: see text]'s per site is found to coincide with that of the corresponding conventional chain with one spin [Formula: see text] per site. In particular, we find that as the system size increases, an increasingly larger block of consecutive lowest energy states with maximal spin per site is observed, robustly supporting the first Hund rule even though the exclusion principle does not apply and the system does not possess Coulomb repulsion. As for why this approximation works, we show that this effective Hund rule emerges as a plausible consequence when applying to composite spin systems the Lieb-Mattis theorem, which is originally for the ground state of ferrimagnetic and antiferromagnetic spin systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349424PMC
http://dx.doi.org/10.1088/1361-648X/aae169DOI Listing

Publication Analysis

Top Keywords

spin [formula
24
hund rule
16
spin
12
[formula text]
12
[formula text]'s
12
text]'s site
12
coulomb repulsion
8
exclusion principle
8
chains composite
8
spin chains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!