Background: The evidence supporting best practice guidelines in the field of cartilage repair of the ankle are based on both low quality and low levels of evidence. Therefore, an international consensus group of experts was convened to collaboratively advance toward consensus opinions based on the best available evidence on key topics within cartilage repair of the ankle. The purpose of this article is to report the consensus statements on "Conservative Management and Biological Treatment Strategies" developed at the 2017 International Consensus Meeting on Cartilage Repair of the Ankle.
Methods: Seventy-five international experts in cartilage repair of the ankle representing 25 countries and 1 territory were convened and participated in a process based on the Delphi method of achieving consensus. Questions and statements were drafted within 11 working groups focusing on specific topics within cartilage repair of the ankle, after which a comprehensive literature review was performed and the available evidence for each statement was graded. Discussion and debate occurred in cases where statements were not agreed upon in unanimous fashion within the working groups. A final vote was then held, and the strength of consensus was characterized as follows: consensus, 51% to 74%; strong consensus, 75% to 99%; unanimous, 100%.
Results: A total of 12 statements on Conservative Management and Biological Treatment Strategies reached consensus during the 2017 International Consensus Meeting on Cartilage Repair of the Ankle. Ten statements reached strong consensus (greater than 75% agreement), and 2 achieved consensus.
Conclusions: This international consensus derived from leaders in the field will assist clinicians with conservative management and biological treatment strategies for osteochondral lesions of the talus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1071100718779390 | DOI Listing |
Biomed Mater
January 2025
Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.
View Article and Find Full Text PDFAging Dis
December 2024
Shandong Laboratory of Biomedical Materials Engineering, Success Bio-Tech Co., Ltd., Jinan, China.
Osteoarthritis (OA) is a common joint disease, which is mainly characterized by the degeneration of articular cartilage, inflammation of the synovial membrane of the joint, and changes in the surrounding bone tissue. With the increase of age and weight, the incidence of OA gradually increases, which seriously affects the quality of life of patients. The primary pharmacological treatments for OA include analgesics and non-steroidal anti-inflammatory drugs.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Center of Precision Medicine, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College), Zheshan West Road, Wuhu, 241001, Anhui, China.
Background: There is currently no definitive treatment for osteoarthritis. We examined the therapeutic effects and underlying mechanisms of platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells (ADSCs), individually or in combination, in a rat model of anterior cruciate ligament-induced degenerative osteoarthritis (OA) of the knee. This study seeks to advance clinical approaches to OA treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Rheumatoid arthritis (RA) is a common autoimmune joint disease characterized by persistent synovial inflammation and cartilage damage. The current clinical treatments primarily utilize drugs such as triptolide (TP) to address inflammation, yet they are unable to directly repair damaged cartilage. Furthermore, the persistent inflammation often undermines the effectiveness of traditional cartilage repair strategies, preventing them from achieving optimal outcomes.
View Article and Find Full Text PDFWith an estimated incidence of 0.02% to 0.2%, multiligamentous knee injuries are rare, often devastating injuries that can occur with concomitant vascular or neurologic involvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!