Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The treatment of ulceration or stomatitis with laser therapy is known to accelerate healing and relieve pain, but the underlying biological mechanism is not fully understood. The present study used a mouse model of ulceration to investigate the molecular mechanisms by which CO₂ laser therapy accelerated the wound healing process. An ulcer was experimentally created in the palatal mucosa of the mouse and irradiated with light from a CO₂ laser. Compared with controls (no irradiation), laser irradiation induced the proliferation of epithelial cells and faster re-epithelialization of the wound area. Immunohistochemistry experiments showed that heat shock protein-70 (HSP70) was expressed mainly in the epithelium of normal palatal tissue, whereas there was little tenascin C (TnC) expression in the epithelium and mesenchyme under normal conditions. Laser irradiation induced HSP70 mRNA and protein expression in the lamina propria as well as TnC expression in the mesenchyme underlying the renewing epithelium. Epithelial cells and fibroblasts were exposed to heated culture medium or laser irradiation to establish whether hyperthermia mimicked the effect of laser irradiation. Culture of fibroblasts in heated medium increased the expressions of both TnC and TGF-β1, whereas laser irradiation induced only TnC expression. The present study indicates that CO₂ laser irradiation exerts a photobiogenic effect to up-regulate TnC expression without inducing TGF-β1 expression. We suggest that CO₂ laser therapy has an advantage over thermal stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14670/HH-18-037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!