Premise Of The Study: A refined procedure is described for modeling small, intricate plant structures using computer-aided design software. The procedure facilitates the study of wind pollination in the family Poaceae and provides virtual biological illustrations for public outreach.
Methods And Results: Spikelets were fixed in gFAA, dehydrated using ethanol and xylene, embedded in paraffin wax, and then sectioned with a rotary microtome. Images of serial sections were used as a reference for modeling the shape of bracts with splines in a computer-aided design program. Virtual models produced by this method have many potential uses; examples include geometric morphometric analyses and simulations of computational fluid dynamics.
Conclusions: This protocol is a synthesis of modern biological illustration and engineering technology. Virtual models facilitate quantitative experiments that may address questions about reproductive biology, conditions shaping the form of anatomical support, or the morphological evolution of structures of biomechanical interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110240 | PMC |
http://dx.doi.org/10.1002/aps3.1177 | DOI Listing |
Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, India.
Background: Neuroinflammation plays an important role in progression of Alzheimer's disease (AD). Interlukin-6 (IL-6) is well identified marker in initiating and regulating inflammation, and formation of senile plaques in brain. Therefore, simultaneous inhibition of both IL-6 and acetylcholinesterase (AChE) may be an effective strategy for AD.
View Article and Find Full Text PDFBackground: We have previously reported the neuroprotective effects of fosgonimeton in amyloid-β (Aβ)-driven preclinical models of Alzheimer's disease (AD). Fosgonimeton is an investigational small-molecule positive modulator of the neurotrophic hepatocyte growth factor (HGF) system, currently under investigation for mild-to-moderate AD (LIFT-AD; NCT04488419). Given the recent approvals of Aβ-targeting monoclonal antibodies (Aβ-mAbs) for the treatment of AD, and growing recognition that combination therapies may improve treatment outcomes, we sought to investigate the preclinical activity of fosgonimeton in the presence of Aβ-mAbs.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!