Most insect species rely on the detection of olfactory cues for critical behaviors for the survival of the species, e.g., finding food, suitable mates and appropriate egg-laying sites. Although insects show a diverse array of molecular receptors dedicated to the detection of sensory cues, two main types of molecular receptors have been described as responsible for olfactory reception in , the odorant receptors (ORs) and the ionotropic receptors (IRs). Although both receptor families share the role of being the first chemosensors in the insect olfactory system, they show distinct evolutionary origins and several distinct structural and functional characteristics. While ORs are seven-transmembrane-domain receptor proteins, IRs are related to the ionotropic glutamate receptor (iGluR) family. Both types of receptors are expressed on the olfactory sensory neurons (OSNs) of the main olfactory organ, the antenna, but they are housed in different types of sensilla, IRs in coeloconic sensilla and ORs in basiconic and trichoid sensilla. More importantly, from the functional point of view, they display different odorant specificity profiles. Research advances in the last decade have improved our understanding of the molecular basis, evolution and functional roles of these two families, but there are still controversies and unsolved key questions that remain to be answered. Here, we present an updated review on the advances of the genetic basis, evolution, structure, functional response and regulation of both types of chemosensory receptors. We use a comparative approach to highlight the similarities and differences among them. Moreover, we will discuss major open questions in the field of olfactory reception in insects. A comprehensive analysis of the structural and functional convergence and divergence of both types of receptors will help in elucidating the molecular basis of the function and regulation of chemoreception in insects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125307 | PMC |
http://dx.doi.org/10.3389/fncel.2018.00253 | DOI Listing |
J Neurosci
January 2025
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
GABAergic neurons in basal forebrain (BF) nuclei project densely to all layers of the mouse main olfactory bulb (OB), the first relay in odor information processing. However, BF projection neurons are diverse and the contribution of each subtype to odor information processing is not known. In the present study, we used retrograde and anterograde tracing methods together with whole-brain light-sheet analyses, patch-clamp recordings coupled with optogenetic and chemogenetic approaches during spontaneous odor discrimination, and go/no-go odor discrimination/learning tests to characterize the synaptic targets in the OB of BF calretinin-expressing (CR+) GABAergic cells and to reveal their functional implications.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China. Electronic address:
Background: Food safety has attracted increasing attention in recent years. Harmful gases often produced during food storage have devastating effects on human health and ecosystems, and identifying and detecting them is essential. To date, many traditional methods have been used to monitor the freshness of food products.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SP 8 Monserrato, 09042 Cagliari, Italy.
Background: Sour taste is associated with acid-base homeostasis, which is critical to cell metabolism and health conditions. Vinegar, which contains acetic acid as the main component, is a sour food considered the second most common condiment in Italy.
Objectives: The aim of the study was to assess differences in sourness perception in subjects with olfactory deficits compared to controls and evaluate myrtle aromatization's potential effect in modulating sourness perception in subjects with hyposmia.
Int J Mol Sci
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.
Over the last three decades, adult neurogenesis in mammals has been a central focus of neurobiological research, providing insights into brain plasticity and function. However, interest in this field has recently waned due to challenges in translating findings into regenerative applications and the ongoing debate about the persistence of this phenomenon in the adult human brain. Despite these hurdles, significant progress has been made in understanding how adult neurogenesis plays a critical role in the adaptation of brain circuits to environmental stimuli regulating key brain functions.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
Department of Otorhinolaryngology, Amsterdam University Medical Centre, Amsterdam, Netherlands.
Background: NSAID-exacerbated respiratory disease (N-ERD) is a hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin or ibuprofen, accompanied by chronic rhinosinusitis (with or without nasal polyps) or asthma. The prevalence of hypersensitivity to NSAIDs is estimated to be 2%. The first line of treatment is the avoidance of NSAIDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!