High-Reynolds Microfluidic Sorting of Large Yeast Populations.

Sci Rep

Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.

Published: September 2018

Microfluidic sorting offers a unique ability to isolate large numbers of cells for bulk proteomic or metabolomics studies but is currently limited by low throughput and persistent clogging at low flow rates. Recently we uncovered the physical principles governing the inertial focusing of particles in high-Reynolds numbers. Here, we superimpose high Reynolds inertial focusing on Dean vortices, to rapidly isolate large quantities of young and adult yeast from mixed populations at a rate of 10 cells/min/channel. Using a new algorithm to rapidly quantify budding scars in isolated yeast populations and system-wide proteomic analysis, we demonstrate that protein quality control and expression of established yeast aging markers such as CalM, RPL5, and SAM1 may change after the very first replication events, rather than later in the aging process as previously thought. Our technique enables the large-scale isolation of microorganisms based on minute differences in size (±1.5 μm), a feat unmatched by other technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137188PMC
http://dx.doi.org/10.1038/s41598-018-31726-6DOI Listing

Publication Analysis

Top Keywords

microfluidic sorting
8
yeast populations
8
isolate large
8
inertial focusing
8
high-reynolds microfluidic
4
sorting large
4
yeast
4
large yeast
4
populations microfluidic
4
sorting offers
4

Similar Publications

Inertial microfluidics, as an efficient method for the manipulation of micro-/nanoparticles, has garnered significant attention due to its advantages of high throughput, structural simplicity, no need for external fields, and sheathless operation. Common structures include straight channels, contraction-expansion array (CEA) channels, spiral channels, and serpentine channels. In this study, we developed a CEA channel embedded with hook-shaped microstructures to modify the characteristics of vortices.

View Article and Find Full Text PDF

In microfluidic chips, glass free-form microchannels have obvious advantages in thermochemical stability and biocompatibility compared to polymer-based channels, but they face challenges in processing morphology and quality. Hence, picosecond laser etching with galvanometer scanning is proposed to machine spiral microfluidic channels on a glass substrate. The objective is to disperse and sort microparticles from a glass microchip that is difficult to cut.

View Article and Find Full Text PDF

Microfluidic droplet sorting has emerged as a powerful technique for a broad spectrum of biomedical applications ranging from single cell analysis to high-throughput drug screening, biomarker detection and tissue engineering. However, the controlled and reliable retrieval of selected droplets for further off-chip analysis and processing is a significant challenge in droplet sorting, particularly in high-throughput applications with low expected hit rates. In this study, we present a microfluidic platform capable of sorting and dispensing individual droplets with minimal loss rates.

View Article and Find Full Text PDF

Droplet microfluidics enable high-throughput screening, sequencing, and formulation of biological and chemical systems at the microscale. Such devices are generally fabricated in a soft polymer such as polydimethylsiloxane (PDMS). However, developing design masks for PDMS devices can be a slow and expensive process, requiring an internal cleanroom facility or using an external vendor.

View Article and Find Full Text PDF

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!