Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved-through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites-to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650743 | PMC |
http://dx.doi.org/10.1126/science.aat8474 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
Lipase enzymes play a vital role in digestion and nutrient metabolism in host organisms, with symbiotic bacteria producing abundant enzymes, carbohydrates, vitamins, and other nutrients. This study aimed to isolate, identify, and screen lipase-producing bacteria from the gut of Systomus sarana, optimize enzyme production using Response Surface Methodology (RSM), and characterize the extracted lipase protein. A total of 11 bacterial strains were isolated and identified through 16S rRNA sequencing.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California Davis, Davis, California 95616, United States.
[FeFe]-hydrogenases are enzymes that catalyze the redox interconversion of H and H using a six-iron active site, known as the H-cluster, which consists of a structurally unique [2Fe] subcluster linked to a [4Fe-4S] subcluster. A set of enzymes, HydG, HydE, and HydF, are responsible for the biosynthesis of the [2Fe] subcluster. Among them, it is well established that HydG cleaves tyrosine into CO and CN and forms a mononuclear [Fe(II)(Cys)(CO)(CN)] complex.
View Article and Find Full Text PDFJCO Glob Oncol
January 2025
Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada.
Purpose: Asparaginase (ASN) is a critical component of pediatric ALL protocols. Until recently, ASN was available in three formulations: native Escherichia coli, PEGylated E. coli (PEG), and Erwinase, with native E.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany.
Unlabelled: is well adapted to survive and persist in the infected host, escaping the host's immune response. Since polyamines such as spermine, which are synthesized by infected macrophages, are able to inhibit the growth of , the pathogen needs strategies to cope with these toxic metabolites. The actinomycete , a close relative of makes use of a gamma-glutamylation pathway to functionally neutralize spermine.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!