Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-His, Gly, Tyr]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-His, Gly, Tyr]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-His, Gly, Tyr]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204900 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.004852 | DOI Listing |
J Biol Chem
October 2018
From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity.
View Article and Find Full Text PDFJ Physiol Pharmacol
August 2010
Department of Pathophysiology and Experimental Neuroendocrinology, Medical University of Lodz, Lodz, Poland.
The influence of gonadotrophin-releasing hormone (GnRH) and its analogues (i.e., agonist and antagonist) on vasopressin (VP) release from the rat hypothalamo-neurohypophysial (H-N) system was studied both in vitro and in vivo.
View Article and Find Full Text PDFBrain Res Bull
January 2010
Department of Pathophysiology, Medical University of Lodz, Narutowicza 60, str., 90-136 Lodz, Poland.
The present study was undertaken to investigate the influence of gonadotropin-releasing hormone (GnRH) and its agonist and antagonist on oxytocin (OT) release from the rat hypothalamo-neurohypophysial (H-N) system. An additional aim was to determine whether the possible response of oxytocinergic neurons to these peptides could be modified by melatonin through a cAMP-dependent mechanism. The results show that the highly selective GnRH agonist (i.
View Article and Find Full Text PDFBiochem J
August 1999
Istituto di Ricerche Farmacologiche 'Mario Negri', Via Eritrea 62, 20157 Milano, Italy.
Prion diseases are marked by the cerebral accumulation of conformationally modified forms of the cellular prion protein (PrP(C)), known as PrP(res). The region comprising the residues 106-126 of human PrP seems to have a key role in this conformational conversion, because a synthetic peptide homologous with this sequence (PrP106-126) adopts different secondary structures in different environments. To investigate the molecular determinants of the physicochemical characteristics of PrP106-126, we synthesized a series of analogues including PrP106-126 H(D), PrP106-126 A and PrP106-126 K, with l-His-->d-His, His-->Ala and His-->Lys substitutions respectively at position 111, PrP106-126 NH(2) with amidation of the C-terminus, PrP106-126 V with an Ala-->Val substition at position 117, and PrP106-126 VNH(2) with an Ala-->Val substitution at position 117 and amidation of the C-terminus.
View Article and Find Full Text PDFComp Biochem Physiol B
October 1993
Department of Biochemistry and Molecular Biology, Stazione Zoologica, Napoli, Italy.
1. D-Amino acid oxidase (D-AAO) oxidizes: D-Met, D-Pro, D-Phe, D-Tyr, D-Ile, D-Leu, D-Ala and D-Val. D-Ser, D-Arg, D-His, D-norleucine and D-Trp are oxidized at a low rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!