Impact of hydrodynamics on iPSC-derived cardiomyocyte differentiation processes.

J Biotechnol

Advanced Centre for Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, United Kingdom. Electronic address:

Published: December 2018

Cardiomyocytes (CMs), derived from pluripotent stem cells (PSCs), have the potential to be used in cardiac repair. Addition of physical cues, such as electrical and mechanical stimulations, have proven to significantly effect morphology, density, cardiogenesis, maturity and functionality of differentiated CMs. This work combines rigorous fluid dynamics investigation and flow frequency analysis with iPSC differentiation experiments to identify and quantify the flow characteristics leading to a significant increase of differentiation yield. This is towards a better understanding of the physical relationship between frequency modulation and embryoid bodies suspension, and the development of dimensionless correlations applicable at larger scales. Laser Doppler Anemometry and Fast Fourier Transform analysis were used to identify characteristic flow frequencies under different agitation modes. Intermittent agitation resulted in a pattern of low intensity frequencies at reactor scale that could be controlled by varying three identified time components: rotational speed, interval and dwell times. A proof of concept biological study was undertaken, tuning the hydrodynamic environment through variation of dwell time based on the engineering study findings and a significant improvement in CM yield was obtained. This work introduces the concept of fine-tuning the physical hydrodynamic cues within a three-dimensional flow system to improve cardiomyocyte differentiation of iPSC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2018.07.028DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte differentiation
8
impact hydrodynamics
4
hydrodynamics ipsc-derived
4
ipsc-derived cardiomyocyte
4
differentiation
4
differentiation processes
4
processes cardiomyocytes
4
cardiomyocytes cms
4
cms derived
4
derived pluripotent
4

Similar Publications

ROS-differentiated release of Apelin-13 from hydrogel comprehensively treats myocardial ischemia-reperfusion injury.

J Control Release

January 2025

Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China. Electronic address:

Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported.

View Article and Find Full Text PDF

Molecular Regulation of Cardiomyocyte Maturation.

Curr Cardiol Rep

January 2025

Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.

Purpose Of The Review: This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart.

Recent Findings: Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades.

View Article and Find Full Text PDF

Programmed cardiomyocyte death in myocardial infarction.

Apoptosis

January 2025

National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.

Cardiovascular disease (CVD) is a leading cause of human mortality worldwide, with patients often at high risk of heart failure (HF) in myocardial infarction (MI), a common form of CVD that results in cardiomyocyte death and myocardial necrosis due to inadequate myocardial perfusion. As terminally differentiated cells, cardiomyocytes possess a severely limited capacity for regeneration, and an excess of dead cardiomyocytes will further stress surviving cells, potentially exacerbating to more extensive heart disease. The article focuses on the relationship between programmed cell death (PCD) of cardiomyocytes, including different forms of apoptosis, necrosis, and autophagy, and MI, as well as the potential application of these mechanisms in the treatment of MI.

View Article and Find Full Text PDF

Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)- linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced dosage in a human model of CHD, with variations in response across individual cells.

View Article and Find Full Text PDF

Proteomic Approach Using DIA-MS Identifies Morphogenesis-Associated Proteins during Cardiac Differentiation of Human iPS Cells.

ACS Omega

January 2025

Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have potential applications in regenerative medicine. The quality by design (QbD) approach enables the efficiency and quality assurance in the manufacturing of hiPSC-derived products. It requires a molecular understanding of hiPSC differentiation throughout the differentiation process; however, information on cardiac differentiation remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!