A Sortase A Programmable Phage Display Format for Improved Panning of Fab Antibody Libraries.

J Mol Biol

Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA. Electronic address:

Published: October 2018

Phage display of combinatorial antibody libraries is a versatile tool in the field of antibody engineering, with diverse applications including monoclonal antibody (mAb) discovery, affinity maturation, and humanization. To improve the selection efficiency of antibody libraries, we developed a new phagemid display system that addresses the complication of bald phage propagation. The phagemid facilitates the biotinylation of fragment of antigen binding (Fab) antibody fragments displayed on phage via Sortase A catalysis and the subsequent enrichment of Fab-displaying phage during selections. In multiple contexts, this selection approach improved the enrichment of target-reactive mAbs by depleting background phage. Panels of cancer cell line-reactive mAbs with high diversity and specificity were isolated from a naïve chimeric rabbit/human Fab library using this approach, highlighting its potential to accelerate antibody engineering efforts and to empower concerted antibody drug and target discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186506PMC
http://dx.doi.org/10.1016/j.jmb.2018.09.003DOI Listing

Publication Analysis

Top Keywords

antibody libraries
12
phage display
8
antibody
8
fab antibody
8
antibody engineering
8
phage
6
sortase programmable
4
programmable phage
4
display format
4
format improved
4

Similar Publications

Objective: This systematic review analyzed phase III trials in platinum-resistant ovarian cancer to understand their poor outcomes and guide future trials.

Methods: A systematic review adhering to PRISMA guidelines was conducted. PubMed/Medline, Cochrane Library CENTRAL, and EMBASE were searched for randomized phase III trials (2010-January 2024) involving patients with platinum-resistant ovarian cancer.

View Article and Find Full Text PDF

Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer that remains an unmet medical need. Because TNBC cells do not express the most common markers of breast cancers, there is an active search for novel molecular targets in triple-negative tumors. Additionally, this subtype of breast cancer presents strong immunogenic characteristics which have been encouraging the development of immunotherapeutic approaches against the disease.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is by far the predominant malignant liver cancer, with both high morbidity and mortality. Early diagnosis and surgical resections are imperative for improving the survival of HCC patients. However, limited by clinical diagnosis methods, it is difficult to accurately distinguish tumor tissue and its boundaries in the early stages of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!