The Tubulin Detyrosination Cycle: Function and Enzymes.

Trends Cell Biol

Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Cancer Genomics Center, Utrecht, The Netherlands. Electronic address:

Published: January 2019

Microtubules are subjected to a variety of post-translational modifications (PTMs). The combination of different α- and β-tubulin isoforms and PTMs are referred to as the tubulin code. PTMs are generated by a suite of enzymes thought to affect tubulin-interacting proteins. One PTM is the cyclic removal and ligation of the C-terminal tyrosine of α-tubulin. This has been implicated in cellular processes such as mitosis, cardiomyocyte contraction, and neuronal function. Recently, vasohibins (VASHs) were identified as the first tubulin-detyrosinating enzymes, A cell-autonomous role for VASHs in regulating the cytoskeleton was unexpected due to their previous association with angiogenesis. This review discusses the functionality of the tubulin detyrosination cycle, the biology of VASHs, and highlights the emerging questions accompanying this link.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2018.08.003DOI Listing

Publication Analysis

Top Keywords

tubulin detyrosination
8
detyrosination cycle
8
cycle function
4
function enzymes
4
enzymes microtubules
4
microtubules subjected
4
subjected variety
4
variety post-translational
4
post-translational modifications
4
modifications ptms
4

Similar Publications

Abscisic Acid, Microtubules and Phospholipase D-Solving a Cellular Bermuda Triangle.

Int J Mol Sci

December 2024

Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.

Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.

View Article and Find Full Text PDF

Background: Vasohibin-1 (VASH1), an angiogenic inhibitor, exhibits tubulin carboxypeptidase activity, which is involved in microtubule functions. Paclitaxel, the core chemotherapeutic agent for ovarian cancer chemotherapy, has a point of action on microtubules and may interact with VASH1.

Aims: To examine the influence of VASH1 on intracellular tubulin detyrosination status, cyclin B1 expression, and paclitaxel chemosensitivity using VASH1-overexpressing ovarian cancer cell lines.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) travel through the vasculature to seed secondary sites and serve as direct precursors of metastatic outgrowth for many solid tumors. Heterotypic cell clusters form between CTCs and white blood cells (WBCs) and recent studies report that a majority of these WBCs are neutrophils in patient and mouse models. The lab discovered that CTCs produce tubulin-based protrusions, microtentacles (McTNs), which promote reattachment, retention in distant sites during metastasis and formation of tumor cell clusters.

View Article and Find Full Text PDF

Microtubules, composed of conserved α/β-tubulin dimers, undergo complex post-translational modifications (PTMs) that fine-tune their properties and interactions with other proteins. Cilia exhibit several tubulin PTMs, such as polyglutamylation, polyglycylation, detyrosination, and acetylation, with functions that are not fully understood. Mutations in AGBL5, which encodes the deglutamylating enzyme CCP5, have been linked to retinitis pigmentosa, suggesting that altered polyglutamylation may cause photoreceptor cell degeneration, though the underlying mechanisms are unclear.

View Article and Find Full Text PDF

α-tubulin detyrosination fine-tunes kinetochore-microtubule attachments.

Nat Commun

November 2024

i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.

Post-translational cycles of α-tubulin detyrosination and tyrosination generate microtubule diversity, the cellular functions of which remain largely unknown. Here we show that α-tubulin detyrosination regulates kinetochore-microtubule attachments to ensure normal chromosome oscillations and timely anaphase onset during mitosis. Remarkably, detyrosinated α-tubulin levels near kinetochore microtubule plus-ends depend on the direction of chromosome motion during metaphase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!