Background: In an earlier pilot study with 10 women, we investigated a new approach for therapy of faecal incontinence (FI) due to obstetric trauma, involving ultrasound-guided injection of autologous skeletal muscle-derived cells (SMDC) into the external anal sphincter (EAS), and observed significant improvement. In the current study, we tested this therapeutic approach in an extended patient group: male and female patients suffering from FI due to EAS damage and/or atrophy. Furthermore, feasibility of lower cell counts and cryo-preserved SMDC was assessed.

Methods: In this single-centre, explorative, baseline-controlled clinical trial, each patient (n = 39; mean age 60.6 ± 13.81 years) received 79.4 ± 22.5 × 10 cryo-preserved autologous SMDC. Changes in FI parameters, Fecal Incontinence Quality of Life (FIQL), anorectal manometry and safety from baseline to 1, 6 and 12 months post implantation were evaluated.

Results: SMDC used in this trial contained a high percentage of myogenic-expressing (CD56) and muscle stem cell marker-expressing (Pax7, Myf5) cells. Intervention was well tolerated without any serious adverse events. After 12 months, the number of weekly incontinence episodes (WIE, primary variable), FIQL and patient condition had improved significantly. In 80.6% of males and 78.4% of females, the WIE frequency decreased by at least 50%; Wexner scores and severity of FI complaints decreased significantly, independent of gender and cause of FI.

Conclusions: Injection of SMDCs into the EAS effectively improved sphincter-related FI due to EAS damage and/or atrophy in males and females. When confirmed in a larger, placebo-controlled trial, this minimal invasive procedure has the potential to become first-line therapy for FI.

Trial Registration: EU Clinical Trials Register, EudraCT 2010-023826-19 (Date of registration: 08.11.2010).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136163PMC
http://dx.doi.org/10.1186/s13287-018-0978-yDOI Listing

Publication Analysis

Top Keywords

skeletal muscle-derived
8
faecal incontinence
8
eas damage
8
damage and/or
8
and/or atrophy
8
muscle-derived cell
4
cell implantation
4
implantation treatment
4
treatment sphincter-related
4
sphincter-related faecal
4

Similar Publications

The purpose of this study is to construct a muscle-specific synthetic promoter library, screen out muscle-specific promoters with high activity, analyze the relationship between element composition and activity of highly active promoters, and provide a theoretical basis for artificial synthesis of promoters. In this study, 19 promoter fragments derived from muscle-specific elements, conserved elements, and viral regulatory sequences were selected and randomLy connected to construct a muscle-specific synthetic promoter library. The luciferase plasmids pCMV-Luc and pSPs-Luc were constructed and transfected into the myoblast cell line C2C12.

View Article and Find Full Text PDF

Over the past couple of decades, it has become apparent that skeletal muscles might be engaged in endocrine signaling, mostly as a result of exercise or physical activity in general. The importance of this phenomenon is currently studied in terms of the impact that exercise- or physical activity -induced signaling factors have, in the interaction of the "muscle-brain crosstalk." So far, skeletal muscle-derived myokines were demonstrated to intercede in the connection between muscles and a plethora of various organs such as adipose tissue, liver, or pancreas.

View Article and Find Full Text PDF

Culturing fish myogenic cells in vitro holds significant potential to revolutionize aquaculture practices and support sustainable food production. However, advancement in in vitro culture technologies for skeletal muscle-derived myogenic cells have predominantly focused on mammals, with limited studies on fish. Scaffold-based three-dimensional (3D) culture systems for fish myogenic cells remain underexplored, highlighting a critical research gap compared to mammalian systems.

View Article and Find Full Text PDF

Osteoarthritis (OA), a prevalent age-related disease, is increasingly recognized as a multifactorial condition. This comprehensive review provides a multifaceted perspective on the organ-joint crosstalk contributing to OA, transcending the traditional focus on local joint pathology. Based on current research, we discussed the brain-joint, gut-joint, muscle-joint interactions in the etiology and progression of OA.

View Article and Find Full Text PDF
Article Synopsis
  • Aging leads to loss of muscle mass and function, resulting in poorer health outcomes, decreased quality of life, and increased mortality risk among older adults.
  • Small extracellular vesicles (sEV), which can be isolated from body fluids and contain specific biomarkers, offer a minimally invasive way to assess muscle health.
  • Research on vervet monkeys showed that sEV from different age groups can reveal molecular changes related to muscle metabolism and regulation, suggesting they may serve as effective biomarkers for muscle health monitoring.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!